首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of TiCl(4) or ZrI(4) with the soft, neutral o-C(6)H(4)(CH(2)EMe)(2) (E = S or Se) in anhydrous CH(2)Cl(2) (or toluene) yields the distorted octahedral chelate complexes [MX(4){o-C(6)H(4)(CH(2)EMe)(2)}]. Using Et(2)Se gives [MX(4)(Et(2)Se)(2)] (M = Zr, X = Cl or I; M = Hf, X = I). The Sn(IV) analogues, [SnCl(4){o-C(6)H(4)(CH(2)EMe)(2)}] and [SnCl(4)(Et(2)Se)(2)] were obtained similarly. These complexes have been characterised spectroscopically and analytically, and crystal structures of trans-[SnCl(4)(Et(2)Se)(2)] and some selenonium salts derived as minor by-products from the parent Group 4 complexes are described. The neutral chalcogenoether complexes have been evaluated as single source precursors to ME(2)/ME thin films via LPCVD. [TiCl(4){o-C(6)H(4)(CH(2)EMe)(2)}] leads to the deposition of air and moisture stable TiE(2) films (with no residual Cl). Coverage of the substrate is uniform with platelet growth perpendicular to the surface. The heavier Zr(IV) species do not lead to significant ZrE(2) deposition. On the other hand, LPCVD of [SnCl(4){o-C(6)H(4)(CH(2)SMe)(2)}] leads to deposition of SnS(2) at lower temperatures and SnS at higher temperatures, while [SnCl(4){o-C(6)H(4)(CH(2)SeMe)(2)}] gives rather uneven coatings of SnSe(2). The Et(2)Se derivative, [SnCl(4)(Et(2)Se)(2)] leads to uniform deposition of SnSe(2) with growth perpendicular to the substrate surface. The SnE(2)/SnE films are stable indefinitely to air and moisture. The generation of TiS(2), SnS(2) and SnS in this way are very rare examples of metal sulfide deposition from C-S bond fission within a thioether complex.  相似文献   

2.
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1?:?1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) ?; R = Ph: d(Te-O) = 2.1849(14) ?). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1?:?1 and 1?:?2 Te?:?L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(iv) halides chalcogenoether complexes are discussed.  相似文献   

3.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

4.
Reaction of GaCl(3) with 1 mol equiv of [14]aneS(4) in anhydrous CH(2)Cl(2) gives the exocyclic chain polymer [GaCl(3)([14]aneS(4))] (1) whose structure confirms trigonal bipyramidal coordination at Ga with a planar GaCl(3) unit. In contrast, using [16]aneS(4) and GaCl(3) or [16]aneSe(4) and MCl(3) (M = Ga or In) in either a 1:1 or a 1:2 molar ratio produces the anion-cation complexes [GaCl(2)([16]aneS(4))][GaCl(4)] (2) and [MCl(2)([16]aneSe(4))][MCl(4)] (M = Ga, 3 and M = In, 4) containing trans-octahedral cations with endocyclic macrocycle coordination. The ligand-bridged dimer [(GaCl(3))(2){o-C(6)H(4)(SMe)(2)}] (5) is formed from a 2:1 mol ratio of the constituents and contains distorted tetrahedral Ga(III). This complex is unusually reactive toward CH(2)Cl(2), which is activated toward nucleophilic attack by polarization with GaCl(3), producing the bis-sulfonium species [o-C(6)H(4)(SMeCH(2)Cl)(2)][GaCl(4)](2) (6), confirmed from a crystal structure. In contrast, the xylyl-based dithioether gives the stable [(GaCl(3))(2){o-C(6)H(4)(CH(2)SEt)(2)}] (8). However, replacing GaCl(3) with InCl(3) with o-C(6)H(4)(CH(2)SEt)(2) preferentially forms the 4:3 In:L complex [(InCl(3))(4){o-C(6)H(4)(CH(2)SEt)(2)}(3)] (9) containing discrete tetranuclear moieties in which the central In atom is octahedrally coordinated to six bridging Cl's, while the three In atoms on the edges have two bridging Cl's, two terminal Cl's, and two mutually trans S-donor atoms from different dithioether ligands. GaCl(3) also reacts with the cyclic bidentate [8]aneSe(2) to form a colorless, extremely air-sensitive adduct formulated as [(GaCl(3))(2)([8]aneSe(2))] (10), while InCl(3) gives [InCl(3)([8]aneSe(2))] (14). Very surprisingly, 10 reacts rapidly with O(2) gas to give initially the red [{[8]aneSe(2)}(2)][GaCl(4)](2) (11) and subsequently the yellow [{[8]aneSe(2)}Cl][GaCl(4)] (12). The crystal structure of the former confirms a dimeric [{[8]aneSe(2)}(2)](2+) dication, derived from coupling of two mono-oxidized {[8]aneE(2)}(+?) cation radicals to form an Se-Se bond linking the rings and weaker transannular 1,5-Se···Se interactions across both rings. The latter (yellow) product corresponds to discrete doubly oxidized {[8]aneSe(2)}(2+) cations (with a primary Se-Se bond across the 1,5-positions of the ring) with a Cl(-) bonded to one Se. Tetrahedral [GaCl(4)](-) anions provide charge balance in each case. These oxidation reactions are clearly promoted by the Ga(III) since [8]aneSe(2) itself does not oxidize in air. The new complexes have been characterized in the solid state by IR and Raman spectroscopy, microanalysis, and X-ray crystallography where possible. Where solubility permits, the solution characteristics have been probed by (1)H, (77)Se{(1)H}, and (71)Ga NMR spectroscopic studies.  相似文献   

5.
The reactions of GaX3 (X = Cl, Br or I) with SMe2, SeMe2 and TeMe2 (L) in non-coordinating solvents produces only the pseudo-tetrahedral [GaX3L], which have been characterised by IR, Raman and multinuclear NMR (1H, 71Ga, 77Se or 125Te) spectroscopy, and by the crystal structure of [GaCl3(SeMe2)]. The 71Ga NMR resonances show small low frequency shifts for fixed halides as the neutral donors change from S --> Se --> Te. Bidentate ligands including MeS(CH2)2SMe, PhS(CH2)2SPh, MeSe(CH2)2SeMe, nBuSe(CH2)2Se(n)Bu and MeTe(CH2)3TeMe (L-L) also produce complexes with 4-coordinate gallium centres, [(GaX3)2(mu-L-L)], confirmed by the crystal structures of [(GaI3)2(mu-MeS(CH2)2SMe)], [(GaCl3)2(mu-PhS(CH2)2SPh)] and [(GaCl3)2(mu-nBuSe(CH2)2Se(n)Bu)]. The structural data are consistent with the weaker Lewis acidity of the gallium as the halide co-ligands become heavier. Multinuclear NMR studies suggest that in chlorocarbon solutions partial dissociation of the ligands occur, which increases with the halide co-ligand Cl < Br < I. The o-xylyl dithioether, o-C6H4(CH2SMe)2, despite being pre-organised for chelation, also forms [(GaCl3)2(mu-L-L)]. The corresponding diselenoether complex decomposes in solution with C-Se bond cleavage to form the selenonium salt [o-C6H4CH2Se(Me)CH2][GaCl4], which was structurally characterised. The ditelluroether o-C6H4(CH2TeMe)2 undergoes rapid C-Te bond fission and rearrangement upon reaction with GaCl3, and the telluronium species [o-C6H4CH2Te(Me)CH2]+ and [MeTe(CH2(o-C6H4)CH2TeMe)2]+ have been identified by ES+ mass spectrometry from their characteristic isotope patterns.  相似文献   

6.
The first soft donor adducts of TiF(4), [TiF(4)(diphosphine)] (diphosphine = o-C(6)H(4)(PMe(2))(2), R(2)P(CH(2))(2)PR(2), R = Me or Et) have been prepared from [TiF(4)(MeCN)(2)] and the diphosphines in rigorously anhydrous CH(2)Cl(2), as extremely moisture sensitive yellow solids, and characterised by multinuclear NMR ((1)H, (31)P, (19)F), IR and UV/vis spectroscopy. The crystal structure of [TiF(4){Et(2)P(CH(2))(2)PEt(2)}] has been determined and shows a distorted six-coordinate geometry with disparate Ti-F(transF) and Ti-F(transP) distances and long Ti-P bonds. Weaker soft donor ligands including Ph(3)P, Ph(2)P(CH(2))(2)PPh(2), o-C(6)H(4)(PPh(2))(2), Ph(2)As(CH(2))(2)AsPh(2), o-C(6)H(4)(AsMe(2))(2) and (i)PrS(CH(2))(2)S(i)Pr do not form stable complexes with TiF(4), although surprisingly, fluorotitanate(IV) salts of the previously unknown doubly protonated ligand cations [LH(2)][Ti(4)F(18)] (L = o-C(6)H(4)(PPh(2))(2), o-C(6)H(4)(AsMe(2))(2) and (i)PrS(CH(2))(2)S(i)Pr) are formed in some cases as minor by-products. The structure of [o-C(6)H(4)(PPh(2)H)(2)][Ti(4)F(18)] shows the first authenticated example of a diprotonated o-phenylene-diphosphine. The synthesis and full spectroscopic characterisation are reported for a range of TiF(4) adducts with hard N- or O-donor ligands for comparison purposes, along with crystal structures of [TiF(4)(thf)(2)], [TiF(4)(Ph(3)EO)(2)]·2CH(2)Cl(2) (E = P or As), and [TiF(4)(bipy)].  相似文献   

7.
Three pendant benzamidines, [Ph-C(=NC(6)H(5))-{NH(E)}] [E = -(CH(2))(2)SMe (1); -(CH(2))(2)S(t)Bu (2); -o-C(6)H(4)SMe (3)], are described. Reactions of 1, 2 or 3 with one molar equivalent of Pd(OAc)(2) in CH(2)Cl(2) give the palladacyclic complexes, [Ph-C{-NH(η(1)-C(6)H(4))}{=N(E)}]Pd(OAc) [E = -(CH(2))(2)SMe (4); -(CH(2))(2)S(t)Bu (5); -o-C(6)H(4)SMe (6)], as mononuclear palladium complexes respectively. A minor product described as 5', {[Ph-C{-N(C(6)H(5))}{-N(CH(2))(2)S(t)Bu}]Pd(OAc)}(2), was isolated as benzamidinate-bridged dinuclear palladium complex upon recrystallizing from Et(2)O/hexane solution. Treatment of 1, 2 or 3 with one molar equivalent of PdCl(2) in the presence of NEt(3) in CH(2)Cl(2) gives the palladacyclic complexes, [Ph-C{-NH(η(1)-C(6)H(4))}{=N(E)}]PdCl [E = -(CH(2))(2)SMe (7); -(CH(2))(2)S(t)Bu (8); -o-C(6)H(4)SMe (9)], as mononuclear palladium complexes respectively. The crystal and molecular structures are reported for compounds 5, 5' and 6-8. The application of these palladacyclic complexes to the Suzuki and Heck coupling reactions was examined.  相似文献   

8.
The diastereomeric methyl rhenium complex [CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)] was prepared in two steps from chiral racemic [CpRe(NO)(CO)(NCMe)]BF4 and the chiral racemic phosphine P(Me)(Ph)(2-C6H4NMe2). The unlike diastereomer reacts preferentially with MeSO3H to give the ring-closed ionic complex unlike-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 along with unreacted like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)], which is easily separated and converted to like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3. Starting from (R)-P(Me)(Ph)(2-C6H4NMe2), the diastereomerically and enantiomerically pure complexes (RRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 and (SRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 were obtained. Thus, this reaction sequence demonstrates a highly diastereoselective proton transfer from a functionalized chiral phosphine to a transition metal. Furthermore, it provides efficient access to enantiomerically pure half-sandwich rhenium complexes.  相似文献   

9.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

10.
Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment coordinating to amide bound phosphorus atom on the other side of the ring. Treatment of 3 with four equivalents of AuCl(SMe(2)) produces a tetranuclear complex, [(AuCl)(4){(t)BuNP(OC(6)H(4)PPh(2))}(2)] (16), whereas a 1 : 3 reaction between 5 and AuCl(SMe(2)) leads to the formation of a trinuclear complex, [(t)BuNH{(t)BuNP(AuCl)}(2)OC(6)H(4)P(AuCl)Ph(2)] (17). The crystal structures of 3, 5, 9-11 and 13-17 are reported.  相似文献   

11.
The reaction of [Sb(2)W(22)O(74)(OH)(2)](12-) and [Fe(4)(H(2)O)(10)(β-TeW(9)O(33))(2)](4-) with (NH(4))(2)[RuCl(6)] in aqueous solution resulted in the novel ruthenium(IV)-containing polyanions [{Ru(IV)(4)O(6)(H(2)O)(9)}(2)Sb(2)W(20)O(68)(OH)(2)](4-) and [{Ru(IV)(4)O(6)(H(2)O)(9)}(2){Fe(H(2)O)(2)}(2){β-TeW(9)O(33)}(2)H](-), exhibiting two cationic, adamantane-like, tetraruthenium(IV) units {Ru(4)O(6)(H(2)O)(9)}(4+) bound to the respective polyanion in an external, highly accessible fashion.  相似文献   

12.
The condensation reaction of resorcinol with cis-[ClP(μ-N(t)Bu)(2)PN(H)(t)Bu] produced a difunctional derivative 1,3-C(6)H(4)[OP(μ-N(t)Bu)(2)PN(H)(t)Bu](2) (1), whereas the similar reaction with [ClP(μ-N(t)Bu)](2) resulted in the formation of a 1:1 mixture of dimeric and tetrameric species, [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (2a) and [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](4) (2b), which were separated by repeated fractional crystallization and column chromatography. The reaction of dimer 2a with H(2)O(2) and selenium produces tetrachalcogenides [{(O)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (3) and [{(Se)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (4), respectively. The reaction between the dimer (2a) and [Pd(μ-Cl)(η(3)-C(3)H(5))](2) or AuCl(SMe(2)) yielded the corresponding tetranuclear complexes, [{((Cl)(η(3)-C(3)H(5))Pd)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (5) and [{(ClAu)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (6) in good yield. The complexes 5 and 6 are the rare examples of phosphorus macrocycles containing two or more exocyclic transition metal fragments. Treatment of 1 with copper halides in 1:1 molar ratio resulted in the formation of one-dimensional (1D) coordination polymers, [(CuX){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}}(2)](n) (7, X = Cl; 8, X = Br; 9, X = I), which showed the helical structure in solid state because of intramolecular hydrogen bonding, whereas similar reactions of 1 with 4 equiv of copper halides also produced 1D-coordination polymers, [(Cu(2)X(2))(2){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}(2)}](n) (10, X = Cl; 11, X = Br; 12, X = I), but containing Cu(2)X(2) rhomboids instead of CuX linkers. The crystal structures of 1, 2a, 2b, 4, 7-9, and 12 were established by X-ray diffraction studies.  相似文献   

13.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

14.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

15.
The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.  相似文献   

16.
The reaction of the 16e half-sandwich complex [CpCo(S2C2B10H10)] (1S; Cp: cyclopentadienyl) with ethynylferrocene in CH2Cl2 at ambient temperature leads to [CpCo(S2C2B10H9)-(CH2CFc)] (2S; Fc: ferrocenyl) and 1,2,4-triferrocenylbenzene. In 2S, B substitution occurs at the carborane cage in the position B3/B6 with the formation of a C-B bond. In the presence of the protic solvent MeOH, 2S loses a CpCo fragment to generate [(CH2CFc)(S2C2B10H9)] (3S). On the other hand, 2S can take a free CpCo fragment to form [(CpCo)2(S2C2B9H8)-(CHCFc)] (4S) containing a nido-C2B9 unit. In sharp contrast, [CpCo-(Se2C2B10H10)] (1Se) does not react with the alkyne in CH2Cl2, but in MeOH [(CHCFc)(Se2C2B10H10)] (5Se) is generated without the presence of a CpCo unit. The reaction of 1 with dimethyl acetylenedicarboxylate at ambient temperature leads to insertion compounds [CpCo(E2C2B10H10){(MeO2C)-C=C(CO2Me)}] (6S, E=S; 6 Se, E=Se). Upon heating, 6S rearranges to two geometrical isomers [CpCo(S2C2B10H9){(MeO2C)C=CH(CO2Me)}] (7S) and [CpCo(S2C2B10H9){(MeO2C)-CHC(CO2Me)}] (8S). In both, B-H functionalization takes place at the carborane cage in the position B3/B6, but 7S is a 16e complex with an olefinic unit in a Z configuration, and 8S is an 18e complex containing an alkyl B-CH group. Further treatment of 7 S with dimethyl acetylenedicarboxylate at ambient temperature affords two B-disubstituted complexes at the carborane cage in the positions of the B3 and B6 sites, that is, [CpCo(S2C2-B10H8){(MeO2C)C=CH(CO2Me)}2] (9S) and [CpCo(S2C2B10H8){(MeO2C)-CHC(CO2Me)}{(MeO2C)C=CH-(CO2Me)}] (10S). Compound 9S is a 16e complex with two olefinic units in E/E configurations, whereas 10S is an 18e species containing both an olefinic substituent and an alkyl B--CH unit. The reaction of 7S with methyl acetylenemonocarboxylate at ambient temperature leads to the sole 16e compound [CpCo(S2C2B10H8){CH=CH(CO2Me)}-{(MeO2C)C=CH(CO2Me)}] (11S). In contrast, 6Se does not rearrange. All new complexes 2S-4S, 5Se, 6Se, and 7S-11S were characterized by NMR spectroscopy (1H, 11B, 13C) and X-ray structural analyses were performed for 2S-4S, 5Se, 6Se, and 7S-9S.  相似文献   

17.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

18.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

19.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

20.
The hydrothermal reactions of CuSO4.5H2O, Na3VO4, 2,2':6':2'-terpyridine (terpy), and the appropriate organophosphonate ligand yield a series of materials of the Cu(ii)-terpy/oxovanadium organophosphonate family. The complexes exhibit distinct structures spanning one-, two- and three-dimensions and exhibiting diverse oxovanadium building blocks. Thus, [{Cu(terpy)}(V2O4)(O3PPh)(HO3PPh)2] (1) is one-dimensional and constructed from binuclear units of corner-sharing V(v) square pyramids. While [{Cu(terpy)}VO(O3PCH2PO3)] (2), [{Cu(terpy)}2(V4O10)(O3PCH2CH2PO3)] (3), and [{Cu(terpy)}(V2O4){O3P(CH2)3PO3}].2.5H(2)O (4.2.5H2O) are similarly one-dimensional, the V/O structural components consist of isolated V(iv) square pyramids, tetranuclear V(v) units of three tetrahedra and one square pyramid in a corner-sharing arrangement, and isolated V(v) tetrahedra and square pyramids, respectively. The second propylenediphosphonate derivative, [{Cu(terpy)}(V2O4){O3P(CH2)3PO3}] (5) is three-dimensional and exhibits isolated V(v) tetrahedra as the vanadate component. The two-dimensional structure of [{Cu(terpy)(H2O)}(V3O6){O3P(CH2)4PO3}] (6) is mixed valence with isolated V(iv) square pyramids and binuclear units of corner-sharing V(v) tetrahedra providing the V/O substructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号