首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of N-methylbenzothiazole-2-thione (C8H7NS2 or NMBZT) with diiodine produced the charge-transfer (ct) complex [(NMBZT).I2] (1). NMBZT reacts with diiodine in the presence of FeCl3 in a molar ratio of 3:6:1 and forms the ionic complex [[(NMBZT)2I+].[FeCl4]-] (2) together with [[(NMBZT)2I+].[I7]-] (2a) iodonium salt. The reaction of benzimidazole-2-thione (C7H6N2S or MBZIM) with diiodine on the other hand results in the formation of the ct [[(MBZIM)2I]+[I3]-].[(MBZIM).I2] (3) compound. The compounds have been characterized by elemental analyses, DTA-TG, FT-Raman, FT-IR, UV-vis, and 1H NMR spectroscopies, and X-ray crystal structure determinations. Compound 1, C8H7I2NS2, is orthorhombic with a space group Pna2(1) and a = 12.5147(13) angstroms, b = 22.536(3) angstroms, c = 4.2994(5) angstroms, and Z = 4. Compound 2, C16H14Cl4FeIN2S4, is monoclinic, space group C2/c, a = 35.781(2) angstroms, b = 7.4761(5) angstroms, c = 18.4677(12) angstroms, beta = 107.219(1) degrees, and Z = 8. Compound 3, C21H18I6N6S3, monoclinic, space group P2(1)/n, a = 14.0652(11) angstroms, b = 22.536(3) angstroms, c = 4.2994(5) angstroms, beta = 99.635(7) degrees, and Z = 4, consists of two component moieties cocrystallized, one neutral which contains the benzimidazole-2-thione (MBIZM) ligand bonded with an iodine atom through sulfur, forming a compound with a "spoke" structure [(MBZIM)I2] 3a, while the other is the ionic complex [[(MBZII)2I+].[I3]-] (3b). The X-ray crystal structure of 1 shows a bond between the thione-sulfur atom and one of the iodine atoms in an essentially planar arrangement. In the cation of 2, an iodine is coordinated by two thione-sulfur atoms in a linear arrangement but the molecule is not planar. For the first time in the solid state a spoke-ionic mixed complex has been characterized in 3. One component of the structure is a molecular diiodine adduct, i.e., [(MBZIM)I2] (3a), with a linear coordination geometry in a decidedly planar arrangement, and the other component is an ionic adduct [[(MBZIM)2I]+.[I3]-] (3b) with the cation having an arrangement similar to that found for 1. Theoretical calculations using density functional (DFT) and ab initio Hartree-Fock theory have been carried out for 1 and 3a,b. The results are consistent with the experimental data. Conclusions on the behavior of a thioamide, when used as an antithyroid drug, have also been made.  相似文献   

2.
Modification of the nickel dithiolate metalloligand, Ni(bme-daco) [where bme-daco = bis(mercaptoethyl)diazacyclooctane] or Ni-1, by oxygenation of one thiolate into a sulfinate, Ni(mese-daco) [where mese-daco = (mercaptoethyl)(sulfinatoethyl)diazacyclooctane] or Ni-2, restricts the ligating ability to monodentate and is expected to reduce the donor ability of the remaining thiolate S. Nevertheless, the Ni-2 complex forms a stable thiolate S-bound adduct of W0(CO)5, (Ni-2)W(CO)5, a complex whose upsilon(CO) IR spectrum reports insignificant differences in the donor abilities of Ni-1 and Ni-2 in (eta1-NiN2S2)W(CO)5 complexes. In the presence of the strong sulfophile CuI, a CuNi2 trimetallic, (Ni-2)2CuBr, was isolated. Another trimetallic, (mu-eta2-Ni-1)[W(CO)5]2, demonstrated the Ni(bme-daco), Ni-1, unit to bridge low-valent metals in a transoid configuration, yielding W-W distances of over 5 A.  相似文献   

3.
The nickel(II) complex of an N2S2 ligand, derived from a diazacycle, N,N'-bis(mercaptoethyl)-1,5-diazacycloheptane, (bme-dach)Ni, Ni-1', serves as a metallodithiolate ligand to NiII, CuI, ZnII, Ag, and PbII. The binding ability of the NiN2S2 ligand to the metal ions was established through spectrochemical titrations in aqueous media and compared to classical S-donor ligands. For M = Ni, Zn, Pb, binding constants, log K = ca. 2. were computed for 1:1 Ni-1'/M(solvate) adducts; for Ag+ and Cu+, the 3:2 (Ni-1')3M2 adducts were the first formed products even in water with log beta3,2 values of 26 and >30, respectively. In all cases, the binding ability of Ni-S-R is intermediate between that of a free thiolate and a free thioether. The great specificity for copper over nickel and zinc by N2S2Ni, which serves as a reasonable structural model for the distal nickel of the acetyl CoA synthase active site, relates to biochemical studies of heterogeneity (metal content and type) in various preparations of acetyl CoA synthase enzyme.  相似文献   

4.
A redox model study of [NiFe] hydrogenase has examined a series of five polymetallics based on the metalation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctane]Ni(II), Ni-1. Crystal structures of three polymetallics of the series have been reported earlier: [(Ni-1)(2)()Ni]Cl(2)(), [(Ni-1)(2)()FeCl(2)()](2)(), and [(Ni-1)(3)()(ZnCl)(2)()]Cl(2)(). Two are described here: [(Ni-1)(2)()Pd]Cl(2)().2H(2)()Ocrystallizes in the monoclinic system, space group P2(1)/c with cell constants a = 12.212(4) ?, b = 7.642(2) ?, c = 16.625(3) ?, beta = 107.69(2) degrees, V = 1443.230(0) ?(3), Z = 2, R = 0.051, and R(w) = 0.056. [(Ni-1)(2)()CoCl]PF(6)() crystallizes in the triclinic system, space group P&onemacr;, with cell constants a = 8.14(2) ?, b = 13.85(2) ?, c = 15.67(2) ?, alpha = 113.59(10) degrees, beta = 101.84(14) degrees, gamma = 94.0(2) degrees, V = 1561.620(0)?(3), Z = 2, R = 0.072, and R(w) = 0.077. In all Ni-1 serves as a bidentate metallothiolate ligand with a "hinge" angle in the range 105-118 degrees and Ni-M distances of 2.7- 3.7 ?. The most accessible redox event is shown by EPR and electrochemistry to reside in the N(2)S(2)Ni unit and is the Ni(II/I) couple. Charge neutralization of the thiolate sulfurs by metalation can (dependent on the interacting metal) stabilize the Ni(I) state as efficiently as methylation forming a thioether. The implication of these results for the heterometallic active site of [NiFe]-hydrogenase as structured from Desulfovibrio gigas (Volbeda, A., et al. Nature, 1995, 373, 580), the generality of the Ni(&mgr;-SR)(2)M hinge structure, and a possible explanation for the unusual redox potentials are discussed.  相似文献   

5.
The reaction of an alkali metal aluminohydride MAlH4 (M = Li, Na) with N,N'-bis-(tert-butyl)sulfamide or N,N'-bis-(benzyl)sulfamide in THF produces the complex ions (Al[SO2(NR)2]2)- (R = tBu, Bn). The X-ray structures of [Li(THF)2(Al[SO2(NtBu)2]2)] infinity (1), [Na(15-crown-5)][Al(SO2(NtBu)2)2], (2) and ([Na(15-crown-5)][O2S(mu-NBn)2Al(mu-NBnSO2NBn)])2 (3.3THF) are reported. The two diazasulfate ligands [SO2(NtBu)2]2- are N,N' chelated to Al3+ in both 1 and 2. In the lithium derivative 1 the spirocyclic (Al[SO2(NtBu)2]2)- anions are bridged by the bis-solvated cations Li(THF)2+ to give a polymeric strand. In the sodium salt 2 the complex anion is O,O' chelated to Na+, which is further encapsulated by a 15-crown-5 ligand to give a monomeric ion-pair complex. By contrast, the benzyl derivative 3 forms a dimer in which the terminal [SO2(NBn)2]2- ligands are (N,N'),(O,O') bis-chelated to Al3+ and Na+, respectively, and the bridging ligands adopt a novel N,O-chelate, N'-monodentate bonding mode. The central core of 3 consists of two four-membered AlOSN rings bridged by two NtBu groups. Crystal data: 1, orthorhombic, Pna2(1), a = 20.159(5) degrees, b = 10.354(3) degrees, c = 15.833(4) degrees, alpha = beta = gamma = 90 degrees, V = 3304.7(15) A3, Z = 4; 2, monoclinic, P2(1)/n, a = 16.031(2) A, b = 9.907(2) A, c = 23.963(4) A, beta = 103.326(2) degrees, Z = 4; 3, triclinic, P1, a = 12.7237(11) A, b = 14.0108(13) A, c = 16.2050(14) A, alpha = 110.351(2) degrees, beta = 111.538(2) degrees, gamma = 97.350(2) degrees, Z = 1.  相似文献   

6.
The synthesis and characterization of the ternary U-O-N compound NO(+)UO2(NO3)3- (1) using IR and low-temperature and room-temperature Raman spectroscopy as well as 14N and 15N NMR spectroscopy are reported. In addition, solution Raman spectra of compound 1 recorded in various solvents are reported. The structure of compound 1 was determined using single-crystal X-ray diffraction techniques: monoclinic, C2/c, a = 13.3992(4) angstroms, b = 9.9781(4) angstroms, c = 7.6455(2) angstroms, beta = 115.452(2) degrees, V = 922.98(5) angstroms3, Z = 4. Compound 1 is highly moisture-sensitive and must be handled under an inert atmosphere. It reacts with water with the liberation of NO2. For the first time, this important precursor for the synthesis of anhydrous uranyl nitrate could be unambiguously identified and has been shown to be an ionic nitrosonium salt and not an adduct between uranyl nitrate and dinitrogen tetroxide, UO2(NO3)2.N2O4, as is incorrectly and predominantly cited in the literature.  相似文献   

7.
The first examples of CT salts based on [Ni(dtcr)2] dianions (1) (dtcr = dithiocroconate = 4,5-disulfanylcyclopent-4-ene-1,2,3-trionate), (TTF)2[Ni(dtcr)2] (TTF = tetrathiafulvalene) (2) and (ET)2[Ni(dtcr)2] [ET = bis(ethylenedithio)tetrathiafulvalene] (3) are reported. The redox-active dianion 1, containing oxo-groups in the periphery of the molecule, has been selected to investigate the role of the oxo-groups in promoting intermolecular interactions and hopefully their conducting properties. The salts 2 and 3 have been prepared by electrocrystallisation methods and 3 shows a semi-metallic behaviour: sigma = 1 x 10(-3) omega(-1) cm(-1) at room temperature, with a low activation energy 60 meV, while crystals of 2 were unsuitable for conductivity measurements. The X-ray structural characterisation shows an alternate dianion-(cation)2 stacking and the capability of the oxo-groups to promote interstack contacts. In 2, the TTF donors are present as face-to-face dimers of monocations (D2)2+. The stacking arrangement is different in 3, where ET monocations stack along two directions ([110] and [110]) in the same manner, with the repeating sequence (ET)-(ET)-[Ni(dtcr)2]-(ET)-(ET) and are almost parallel to each other, with interplanar distances of 3.575 angstroms. Both structures are built on a dianion and two donor molecules, each one with a charge of +1. Diffuse reflectance combined with vibrational spectra complement structural results well. Crystal data: both 2 and 3 crystallise in the monoclinic space group P2(1)/c with a = 8.6340(8) angstroms, b = 21.586(2) angstroms, c = 7.5960(8) angstroms, beta = 95.625(11) degrees and V = 1408.9(2) angstroms3 for 2 and with a = 9.3700(7), b = 7.4410(6), c = 28.278(2) angstroms, beta = 99.039(6) degrees, V = 1947.1(3) angstroms3 for 3.  相似文献   

8.
Vaqueiro P 《Inorganic chemistry》2006,45(10):4150-4156
Five new thiogallates have been prepared solvothermally in the presence of ethylenediamine and characterized by single-crystal X-ray diffraction, thermogravimetry, and elemental analysis. [enH2][Ga4S7(en)2] (1), which crystallizes in the monoclinic space group P2(1)/c with lattice parameters a = 12.8698(12) angstroms, b = 10.4812(9) angstroms, c = 16.5473(14) angstroms and beta = 102.457(4) degrees (Z = 4), exhibits a layered structure in which both covalently and hydrogen-bonded template molecules coexist. The structures of [M(en)3](0.5)[GaS2] (M = Mn (2) (orthorhombic, Cmcm, a = 9.5555(6) angstroms, b = 15.0696(10) angstroms, c = 12.2893(7) angstroms, Z = 8) M = Co (3) (orthorhombic, Cmcm, a = 9.4660(7) angstroms, b = 15.0990(11) angstroms, c = 12.2540(8) angstroms, Z = 8), M = Ni (4) (orthorhombic, Cmcm, a = 9.4510(10) angstroms, b = 15.1416(15) angstroms, c = 12.2387(11) angstroms, Z = 8)) and Mn(en)2Ga2S4 (5) (monoclinic, C2/c, a = 14.3002(11) angstroms, b = 7.9509(5) angstroms, c = 12.1184(6) angstroms, beta = 100.191(4) degrees , Z = 4) are closely related and contain one-dimensional [GaS2]- chains, which are separated by [M(en)3]2+ counterions in 2, 3, and 4, and linked into a three-dimensional structure by [Mn(en)2]2+ units in 5.  相似文献   

9.
Two novel Mn12 derivatives [Mn12O12(O2CC[triple bond]CH)16(H2O)4] x 3H2O (1) and [Mn12(O2CC[triple bond]CC6H5)16(H2O)4] x 3H2O (2) have been prepared and characterized. Magnetic measurements confirm that both function as single-molecule magnets (SMM), showing frequency-dependent out-of-phase AC susceptibility signals and magnetization hysteresis curves. Thermal stability studies of both complexes were first conducted in the solid state. While complex 1 undergoes a sudden exothermal decomposition at T(onset) = 118 degrees C, complex 2 exhibits a higher stability. Thermolysis reaction of 1 was hence assessed in solution to yield dark red crystals of a two-dimensional Mn(II)-based co-ordination polymer [Mn3(O2CC[triple bond]CH)6(H2O)4] x 2H2O (3), which corresponds to an extended sheet-like structure that crystallizes in the monoclinic space group P2(1)/n; a = 9.2800(2) angstroms, b = 9.4132(2) angstroms, c = 14.9675(3) angstroms, beta = 99.630(1) degrees, and Z = 2. Finally, the magnetic properties of complex 3 have been studied on an oriented single crystal over two different orientations of the reciprocal vector versus the external field.  相似文献   

10.
The azide and amide complexes (NBu4)[Ni(N3)('S3')] (2) and (NBu4)[Ni[N(SiMe3)2]('S3')] (4) were found to react with CO, CO2, and SO2 under very mild conditions at temperatures down to -50 degrees C. Depending on the N oxidation state of the nitrogen ligands, addition or partial to complete desoxygenation of the oxides takes place. The reaction between 2 and CO gives (NBU4)[Ni(NCO)('S3')] (3). The reactions between 4 and CO, CO2, and SO2 afford selectively the cyano, isocyanato, and sulfinylimido complexes (NBu4)[Ni(X)('S3')] with X = CN- (5), NCO- (3), and NSO- (6). The silyl groups act as oxygen acceptors. Mechanisms are suggested which have in common the formation of reactive five-coordinate (NBu4)[Ni(L)(L')('S3')] intermediates. In these reactions, highly activated L and L' react with each other. The complexes were characterized by standard methods, and (NBu4)[Ni(CN)('S3')] (5) was also analyzed by X-ray crystallography.  相似文献   

11.
Oxidations of a trigonal-bipyramidal, high-spin Ni(II) dithiolate complex of a pentadentate, N3S2-donor ligand, N1,N9-bis(imino-2-mercaptopropane)-1,5,9-triazanonane) nickel(II), and the structurally analogous Zn(II) complex, lead to oxidations of the ligand. Oxidation of the Ni(II) complex with I2 produces a novel Ni(II) macrocyclic cationic complex containing a monodentate disulfide ligand (2). Crystals of the I3- salt of the complex form in the triclinic space group P(1) with cell dimensions a=8.508(3) A, b=9.681(2) A, c=14.066(4) A, angles alpha=90.97(2) degrees , beta=91.61(3) degrees , gamma=90.83(2) degrees , and Z=2. The structure was refined to R=6.31% and Rw=16.63% (I > 2sigma(I)). Oxidation of the Ni(II) complex with O2 leads to the formation of a novel pentadentate bis-iminothiocarboxylate complex with trigonal-bipyramidal geometry (3). This neutral product crystallizes in the monoclinic space group P21/c with cell dimensions a=13.625(3) A, b=7.605(5) A, c=14.902(4) A, angles alpha=gamma=90 degrees, beta=102.81(2) degrees , and Z=4. The structure was refined to R=7.18% and Rw=17.86% (I > 2sigma(I)). Oxidation of the Zn(II) dithiolate analogue with O2 leads to the formation of the Zn(II) complex of the pentadentate bis-iminothiocarboxylate ligand. The neutral complex is isomorphous with the Ni(II) complex and crystallizes in the monoclinic space group P2(1)/c with cell dimensions a=13.8465(4) A, b=7.6453(2) A, c=15.0165(6) A, angles alpha=gamma=90 degrees , beta=103.2140(11) degrees , and Z=4. The structure was refined to R=3.96% and Rw=9.45% (I > 2sigma(I)). Details of the crystal structures are reported. Kinetics of the O2 reactions show that the reactions of the Ni(II) and Zn(II) dithiolates follow the rate law, Rate=k2[1][O2], with k2=1.81 M(-1) s(-1) for the Ni(II) complex and k2=1.93 x 10(-2) M(-1) s(-1) for the Zn(II) complex. The O2 oxidation of the high-spin Ni(II) thiolate complex was found to follow a similar oxidation mechanism to those of low-spin Ni(II) complexes, which form transient persulfoxide intermediates that yield S-oxidation products. In the case of the high-spin system reported here, the transient persulfoxide intermediate gives rise to an alternative ligand oxidation product, a bis-iminothiocarboxylate complex, because of the reactivity of the ligand, which contains a methylene with acidic H atoms alpha to the thiolate sulfur. The proposed mechanism is supported by studies of the analogous Zn dithiolate complex, which gives rise to the analogous bis-iminothiocarboxylate product (5).  相似文献   

12.
A series of novel [2]ferrocenophanes with unsymmetrical C-E bridges has been prepared in which the covalent radius of the second-row element, E, and hence the ring strain present is varied. Species [Fe(eta-C(5)Me(4))(eta-C(5)H(4))CH(2)ER(x)] (7, ER(x) = SiMe(2); 8a, ER(x) = PPh; 8b, ER(x) = PMes; 9, ER(x) = S) were synthesized via reaction of the PMDETA (N,N,N',N' ',N' '-pentamethyldiethylenetriamine) adduct of [(eta-C(5)H(4)Li)Fe(eta-C(5)Me(4))CH(2)Li] with Cl(2)ER(x) (E = Si or P) or S(SO(2)Ph)(2). Studies of 7-9 by single-crystal X-ray diffraction confirmed the presence of ring-tilted structures: for 7, alpha (angle between the planes of the Cp rings) = 11.8(1) degrees; for 8a, alpha(average) = 14.9(3) degrees; for 8b, alpha(average) = 18.2(2) degrees; and for 9, alpha = 18.5(1) degrees. The least tilted compound, 7, was found to be resistant to thermal, anionic, and transition metal catalyzed ROP. In contrast, the significantly more tilted compounds 8a, 8b, and 9 were all found to polymerize thermally with small negative values of DeltaH(ROP) of ca. 10-20 kJ.mol(-1) determined by DSC. Whereas thermal ROP of 8a yielded the soluble high molecular weight polycarbophosphaferrocene [(eta-C(5)Me(4))Fe(eta-C(5)H(4))CH(2)PPh](n) (11), species 9 formed the insoluble polycarbothiaferrocene [(eta-C(5)Me(4))Fe(eta-C(5)H(4))CH(2)S](n) (14). Attempted anionic ROP of 8a and 9 with (n)BuLi was unsuccessful and treatment of 8a with CF(3)SO(3)Me resulted in the formation of the novel phosphonium salt [(eta-C(5)Me(4))Fe(eta-C(5)H(4))CH(2)PMePh][CF(3)SO(3)] (13), which was found to be resistant to thermal ROP as a result of its less strained structure (for 13, alpha = 11.4(7) degrees ). Treatment of 9 with CF(3)SO(3)Me or BF(3).Et(2)O resulted in the first example of cationic ROP for a transition metal-containing heterocycle to yield polycarbothiaferrocene 14. In the presence of excess 2,6-di-tert-butylpyridine as a selective proton trap, ROP of 9 was only observed with CF(3)SO(3)Me, and not BF(3).Et(2)O, which indicated that Me(+) and H(+) are the probable cationic initiators, respectively. Thermal copolymerization of 9 with trimethylene sulfide resulted in the isolation of the soluble, high molecular weight, random copolymer [(eta-C(5)Me(4))Fe(eta-C(5)H(4))CH(2)S](n)[(CH(2))(3)S](m), 15.  相似文献   

13.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

14.
The synthesis, crystal structure, and physical characterization of the coordination compounds [Ni(en)2]4[Fe(CN)5NO]2[Fe(CN)6]x5H2O (1), [Ni(en)2][Fe(CN)5NO]x3H2O (2), [Mn(3-MeOsalen)(H2O)]2[Fe(CN)5NO] (3), and [Mn(5-Brsalen)]2[Fe(CN)5NO] (4) are presented. 1 crystallizes in the monoclinic space group P2(1)/n (a = 7.407(4) A, b = 28.963(6) A, c = 14.744(5) A, alpha = 90 degrees, beta = 103.26(4) degrees, gamma = 90 degrees, Z = 2). Its structure consists of branched linear chains formed by cis-[Ni(en)2]2+ cations and ferrocyanide and nitroprusside anions. The presence of two kinds of iron(II) sites has been demonstrated by M?ssbauer spectroscopy. 2 crystallizes in the monoclinic space group P2(1)/c (a = 11.076(3) A, b = 10.983(2) A, c = 17.018(5) A, alpha = 90 degrees, beta = 107.25(2) degrees, gamma = 90 degrees, Z = 4). Its structure consists of zigzag chains formed by an alternated array of cis-[Ni(en)2]2+ cations and nitroprusside anions. 3 crystallizes in the triclinic space group P1 (a = 8.896(5) A, b = 10.430(5) A, c = 12.699(5) A, alpha = 71.110(5) degrees, beta = 79.990(5) degrees, gamma = 89.470(5) degrees, Z = 1). Its structure comprises neutral trinuclear bimetallic complexes in which a central [Fe(CN)5NO]2- anion is linked to two [Mn(3-MeOsalen)]+ cations. 4 crystallizes in the tetragonal space group P4/ncc (a = 13.630(5) A, c = 21.420(8) A, Z = 4). Its structure shows an extended 2D neutral network formed by cyclic octameric [-Mn-NC-Fe-CN-]4 units. The magnetic properties of these compounds indicate the presence of quasi-isolated paramagnetic Ni2+ and Mn3+. Irradiated samples of the four compounds have been studied by differential scanning calorimetry to detect the existence of the long-lived metastable states of nitroprusside.  相似文献   

15.
Two tetranuclear manganese(II) complexes [Mn(II)4(thiaS)2] (1) and [Mn(II)4(thiaSO)2] (2) have been synthesized under solvothermal conditions in methanol with p-tert-butylthiacalix[4]arene (thiaS) and p-tert-butylsulfinylthiacalix[4]arene (thiaSO). For both complexes, the structure has been established from single-crystal X-ray diffraction. [Mn4(thiaS)2].H2O (1) crystallizes in the orthorhombic Immm (No. 71) space group with the following parameters: a = 18.213 (5) angstroms, b = 19.037 (5) angstroms, c = 29.159 (5) angstroms, V = 10110 (4) angstroms3, and Z = 4. [Mn4(thiaSO)2].H2O (2) crystallizes in the monoclinic C2/m (No. 12) space group with the following parameters: a = 33.046(1) angstroms, b = 19.5363 (8) angstroms, c = 15.7773 (9) angstroms, beta = 115.176 (2) degrees, V = 9218.3 (8) angstroms3, and Z = 4. The two complexes are neutral and are best described as manganese squares sandwiched between two thiacalixarene macrocycles. In both complexes, each manganese center is six-coordinated in a trigonal prismatic geometry with four phenoxo oxygen atoms plus two sulfur atoms for 1 or two oxygen atoms from SO groups for 2. The two tetranuclear complexes exhibit identical magnetic behaviors resulting from antiferromagnetic interactions between the four manganese centers. The simulation of the magnetic susceptibility was done considering a single exchange-coupling constant between the manganese(II) ions, J (H = -J(S1S2 + S2S3 + S3S4 + S1S4)). The best fits give the same result for the two complexes: g = 1.94 and J = -5.57 cm(-1).  相似文献   

16.
Reaction of trimethylsilyl-protected cytosine with methyl iodide afforded N1-methylated product. Subsequent treatment with ethanol resulted in cleavage of the protection group forming [(MeCyt)2H]I (4). Identity of was confirmed by microanalysis, mass spectrometry, 1H and 13C NMR spectroscopy and by single-crystal X-ray diffraction analysis. Crystals of consist of dimeric [(MeCyt)2H]+ cations and I- anions. These ions are arranged in the crystal such that there is a strong base stacking (mean stacking distance 3,467 angstroms) and, furthermore, pi interactions between I- and cytosine rings (mean distance 3,737 angstroms). The dimeric [(MeCyt)2H]+ cations are centrosymmetric having three strong hydrogen bonds, namely two terminal N4-H...O' ones (N4...O' 2.815(4) angstroms) and a central N3-H...N3' (N3...N3' 2.813(4) angstroms) one. Quantum chemical calculations on the DFT level of theory show that the gas phase structure of the dimeric cation exhibits two different terminal N-HO hydrogen bonds, a stronger (N4...O' 2.722 angstroms) and a weaker one (N4'...O 2.960 angstroms). The central N3-HN3[prime or minute] hydrogen bond (N3...N3' 2.852 angstroms) was characterized to have an unsymmetrically located proton and a typical double minimum potential with a very low activation barrier. The interaction energy between [(MeCyt)H]+ and MeCyt yielding [(MeCyt)2H]+ was calculated to be -42.4 kcal mol(-1)(ZPE and BSSE corrected). Comparison with the interaction energy (calculated on the same level of the theory) between cytosine and guanine yielding the triply hydrogen-bonded Watson-Crick dimer (-24.2 kcal mol(-1)) revealed a much higher stability of the hydrogen bonds in [(MeCyt)2H]+.  相似文献   

17.
Three new Ni(BDC)/2,2'-bipy compounds, Ni2(BDC)(HBDC)2(2,2'-bipy)2 (2), Ni3(BDC)3(2,2'-bipy)2 (3), and Ni(BDC)(2,2-bipy)2.2H2O (5), in addition to the previously reported Ni(BDC)(2,2'-bipy).0.75H2BDC (1) and Ni(BDC)(2,2'-bipy)(H2O) (4) [BDC = 1,4-benzenedicarboxylate; 2,2'-bipy = 2,2'-bipyridine], have been synthesized by hydrothermal reactions. A systematic investigation of the effect of the reaction temperature and pH resulted in a series of compounds with different compositions and dimensionality. The diverse product slate illustrates the marked sensitivity of the structural chemistry of polycarboxylate aromatic ligands to synthesis conditions. Compound 1, which has a channel structure containing guest H2BDC molecules, is formed at the lowest pH. The guest H2BDC molecules are connected by hydrogen bonds and form extended chains. At a slightly higher pH, a dimeric molecular compound 2 is formed with a lower number of protonated carboxylate groups per nickel atom and per BDC ligand. Reactions at higher temperature and the same pH lead to the transformation of 1 and 2 into the two-dimensional, layered trinuclear compound 3. As the pH is increased, a one-dimensional polymer 4 is formed with a water molecule coordinated to Ni2+. Bis-monodentate and bischelating BDC ligands alternate along the chain to give a crankshaft rather than a regular zigzag arrangement. A further increase of the pH leads to the one-dimensional chain compound 5, which has two chelating 2,2'-bipy ligands. Crystal data: 2, triclinic, space group P, a = 7.4896(9) angstroms, b = 9.912(1) angstroms, c = 13.508(2) angstroms, alpha = 86.390(2) degrees , beta = 75.825(2) degrees, gamma = 79.612(2) degrees, Z = 2; 3, orthorhombic, space group Pbca, a = 9.626(2) angstroms, b = 17.980(3) angstroms, c = 25.131(5) angstroms, Z = 4; 5, orthorhombic, space group Pbcn, a = 14.266(2) angstroms, b = 10.692(2) angstroms, c = 17.171(2) angstroms, Z = 8.  相似文献   

18.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

19.
The novel octanuclear copper(II) cluster [Cu6[(PhSiO2)6]2[NCCu(Me6tren)]2(MeOH)4]2+ (1) has been isolated as a perchlorate salt by reacting the hexacopper(II) metallasiloxane cage [Cu6[(PhSiO2)6]2(nBuOH)x] (x = 4, 6) with [Cu(Me6tren)CN]ClO4 in a methanol/chloroform mixture (Me6tren = tris(2-(dimethylamino)ethyl) amine). Crystal data for 1(ClO4)2 x MeOH: monoclinic, space group P2(1)/n (no. 14), a = 16.8490(3) angstroms, b = 22.2966(4) angstroms, c = 17.2508(3) angstroms, beta = 94.7658(5) degrees, V = 6458.3(2) angstroms3, Z = 2. The structure comprises a highly distorted hexagonal Cu6 array linked to two [Cu(Me6tren)] units via cyanide bridges. Magnetic measurements reveal that the addition of the copper cyanide complexes dramatically affects the magnetism of the Cu6 unit, whose ground spin state changes from S = 3 to S = 0.  相似文献   

20.
Tian YQ  Chen ZX  Weng LH  Guo HB  Gao S  Zhao DY 《Inorganic chemistry》2004,43(15):4631-4635
Two structurally different polymorphs of cobalt(II) imidazolate frameworks are solvothermally synthesized by using N,N-dimethylacetamide as a template: The polymorph 6 (a = 9.797 (4) angstroms, b = 15.301(6) angstroms, c =14.902(6) angstroms, beta = 98.904(6) degrees, monoclinic, P21/n) shows structures of silicate CaAl2Si2O8 with CrB4 topology, while polymorph 7 (a = 15.173(4) angstroms, b = 15.173(4) angstroms, c = 19.089(5) angstroms, Pbca) shows CaGa2O4-related topological structures. In addition, the 7' (a = 15.9712(18) angstroms, b = 15.9253(19) angstroms, c = 18.475(2) angstroms, Pbca), a compound isostructural with 7, is synthesized by using cyclohexanol as a template. Thus, these cobalt(II) imidazolate polymers are reminiscent of the zeolite syntheses in that not only the same topological structure can be synthesized by using the different organic templates, but also different topological structures can be synthesized by using the same organic template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号