首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using principles inspired by the study of naturally occurring sticky systems such as the micro- and nanoscale fibers on the toes of geckos and the adhesive proteins secreted by marine animals such as mussels, this study describes the development and evaluation of a novel patterned and coated elastomeric microfibrillar material for enhanced repeatable adhesion and shear in wet environments. A multistep fabrication process consisting of optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of polyurethane elastomeric microfibers with mushroom-shaped tips coated with a thin layer of lightly cross-linked p(DMA-co-MEA), an intrinsically adhesive synthetic polymer. Adhesion and shear force characterization of these arrays in contact with a glass hemisphere is demonstrated, and significant pull-off force, overall work of adhesion, and shear force enhancements in submerged aqueous environments are shown when compared to both unpatterned and uncoated samples, as well as previously evaluated patterned and coated arrays with differing geometry. Such materials may have potential value as repeatable adhesives for wet environments, such as for medical devices.  相似文献   

2.
Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko.  相似文献   

3.
Mechanism of adhesion between polymer fibers at nanoscale contacts   总被引:1,自引:0,他引:1  
Adhesive force exists between polymer nano/microfibers. An elaborate experiment was performed to investigate the adhesion between polymer nano/microfibers using a nanoforce tensile tester. Electrospun polycaprolactone (PCL) fibers with diameters ranging from 0.4-2.2 μm were studied. The response of surface property of electrospun fiber to the environmental conditions was tracked by FTIR and atomic force microscopy (AFM) measurements. The effect of temperature on molecular orientation was examined by wide angle X-ray diffraction (WAXD). The adhesive force was found to increase with temperature and pull-off speed but insensitive to the change of relative humidity, and the abrupt increase of adhesion energy with temperature accompanied by a reduced molecular orientation in the amorphous part of fiber was observed. Results show that adhesion is mainly driven by van der Waals interactions between interdiffusion chain segments across the interface.  相似文献   

4.
利用低压近场静电纺丝技术制备了ZnO/PVDF(聚二偏氟乙烯)微米纤维平行阵列, 通过光学显微镜、扫描电子显微镜(SEM)和X射线能量色散光谱(EDS)对ZnO/PVDF微米纤维进行了表征. 该复合纤维的平均直径约为40 μm. EDS分析测试证明ZnO纳米颗粒已经掺杂进入了平行微米纤维中. 压电性能和电学性能测试结果表明, ZnO/PVDF微米纤维阵列的压电性能增强. 研究结果表明, 近场电纺丝ZnO/PVDF复合微米纤维阵列在压电型压力传感器和纳米发电机领域具有潜在的应用价值.  相似文献   

5.
The precipitation of micro- and nanoparticles of calcium carbonate onto lignocellulosic microfibers was investigated at different microfiber concentrations with and without polyacrylic acid (PAA), i.e. a polymer commonly used to form polymer-induced liquid precursors of CaCO3. Concentrations of PAA, Ca(OH)2, CO2 and microfiber were varied in order to study the impact of reaction conditions on PCC formation in a batch reactor operated at ambient temperature. High resolution scanning electron micrographs of the samples show that both microfiber concentration and PAA dosage affected the nucleation and crystal growth of PCC filler on cellulosic fiber. Interestingly, at higher microfiber concentrations, larger amount of nano-sized spherical crystals were formed on the microfibers. A higher dosage of PAA, on the other hand, resulted in less nucleation on the microfiber, suggesting a preferential bulk nucleation mechanism. A higher concentration of PAA during the precipitation also led to the formation and stabilization of amorphous CaCO3, which was supported by SEM images and XRD analysis (lack of characteristic crystal structure).  相似文献   

6.
Soft conducting materials in the shape of microfibers with various functional geometries are crucial for soft electronics. To develop highly stretchable conducting microfibers, a microfluidic method is used to prepare hydrogels in a double-network structure. Based on the coagulation of chitosan in cold water and simultaneous photopolymerization and photocrosslinking of N-isopropylacrylamide and N-diethylacrylamide, long microfibers with controlled uniform diameters can be obtained at the junction of a coaxially aligned microchannel device. After further reinforcement of the chitosan chain and exchange of the medium of the hydrogel microfiber with an aqueous electrolyte of lithium bis(trifluoromethanesulfonyl)imide, the prepared ionic hydrogel exhibits high conductivity and stretchability and dry-free properties. Owing to its mechanical robustness and ionic conductivity, we envision a highly stretchable soft electrode with the prepared ionic hydrogel microfiber that can be stretched up to 900%. This fiber has potential for applications in soft electronics and wearable devices.  相似文献   

7.
Natural gecko toes covered by nanomicro structures can repeatedly adhere to surfaces without collecting dirt. Inspired by geckos, we fabricated a high-aspect-ratio fibrillar adhesive from a stiff polymer and demonstrated self-cleaning of the adhesive during contact with a surface. In contrast to a conventional pressure-sensitive adhesive (PSA), the contaminated synthetic fibrillar adhesive recovered about 33% of the shear adhesion of clean samples after multiple contacts with a clean, dry surface.  相似文献   

8.
The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.  相似文献   

9.
A generic rationale for the fabrication of high aspect ratio fibrillar nanoscale arrays is described. The design emulates an intermittence effect observed for β-structured α-synunclein fibrils, reported herein, in a structurally unrelated α-helical fiber. The generated nanoarrays are composed of periodic nanosized segments separated at uniform distances of unfolded regions. These regions can be targeted for conformational binding and refolding with metal nanoparticle-peptide conjugates for the conversion of fibrillar arrays into nanoparticle arrays. The introduced concept opens new strategies for engineering novel nanoscale materials and devices.  相似文献   

10.
Summary: Ethylene nanoextrusion polymerization has been demonstrated to be a novel nanofabrication concept for the preparation of polyethylene (PE) fibers directly from ethylene monomers without any post‐processing procedures. For PE fibers, chain orientation is a critical parameter that affects performance and application of the fibrous materials. In this communication, we report an investigation on chain orientation in PE fibrous samples prepared through nanoextrusion polymerization using a two‐dimensional wide angle X‐ray diffraction (2D WAXRD) technique. Two types of fibrous samples, including individual microfibers and microfiber aggregates, were sampled randomly and studied. For individual PE microfibers, anisotropic diffraction patterns were observed, suggesting chain orientation along the microfiber axial direction. Some microfibers showed the most desired diffraction pattern often found in high‐modulus high‐strength PE fibers. These samples possessed a very high degree of chain orientation along the fiber axis. Owing to a random aggregation of anisotropic microfibers, microfiber aggregates exhibited isotropic diffraction patterns. This work provided further experimental evidence for the proposed nanoextrusion polymerization concept.

2D WAXRD diffraction pattern of a PE microfiber.  相似文献   


11.
Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 µm were achieved via electrospinning with 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFP)‐based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 µm comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti‐proliferative drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.  相似文献   

13.
The majority of tissues within human body are constituted of designated structures to enable specific functions. Much effort has been done to engineer artificial fabric cell-laden scaffolds which are widely used for a great diversity of linear tissue constructs. For this purpose, collagen microfibers are of great concern among diverse materials while the control of cell-laden fiber formation and orientated structure is still unsolvable. Here, we developed a novel microfluidic-based strategy for continuous fabrication and assembly of three-dimensional (3D) cell-laden oriented collagen hydrogel microfibers. Inspired by the flow-introduced shear force in a microfluidic chip, collagen hydrogel microfibers obtained the oriented fabric structure which could guide rat pheochromocytoma cells (PC12) oriented spreading and enhance relative cellular functional expression. Rat aortic endothelial cells (RAOECs) were introduced to construct a co-cultured microfiber model, which further facilitated the functional expression of neural cells due to the synergistic effect of both vascularized-like cells and neural-like cells. Moreover, the ability of assembling collagen microfibers into larger constructs will benefit a variety of applications in tissue engineering and biomedical research.  相似文献   

14.
The attachment pads of some beetles, spiders, flies, and geckos are covered by a dense array of long hairs with characteristic geometries. This curious surface topography allows them to firmly attach to and easily release from almost any kind of surface. In a technological context, such reversible adhesion could enable robots to walk along walls or ceilings, or lead to new medical devices, disposable plasters, reusable adhesive tapes, etc. Artificial fibrillar surfaces mimicking nature's design have been recently fabricated, but their adhesion performance is still far from that of natural systems. This review describes the progress in this field during the last few years and discusses the issues pending for the future.  相似文献   

15.
Natural fiber is often considered inadequate for high performance reinforcement of polymer matrix composites. However, some natural fibers have relatively high mechanical properties with modulus close to that of high-performance synthetic fibers. Since the reinforcing efficiency of a short fiber is determined not only by the fiber modulus, but also by other physical properties such as the length to diameter ratio. Here it is shown, for the first time, that pineapple leaf fiber, whose modulus is somewhat lower than that of aramid fiber, can be used to reinforce natural rubber more effectively than aramid fiber. The situation was achieved by breaking down the fiber bundles into the constituent microfibers to gain very high aspect ratio. Comparisons were made at fiber contents of 2, 5 and 10 parts (by weight) per hundred of rubber (phr) using dynamic mechanical analysis over a range of temperature. The results reveals that at temperature below the glass transition of the matrix rubber and low fiber contents of 2 and 5 phrs, aramid fiber displays slightly better reinforcement efficiency. At high temperatures of 25 and 60 °C and high fiber content of 10 phr, pineapple leaf microfiber clearly displays higher reinforcement efficiency than does aramid fiber. Surface modification of the fiber by silane treatment provides a slight improvement in reinforcing efficiency.  相似文献   

16.
A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH) and poly(N-vinylcarbazole)(PVK) are successfully prepared for intriguing multi-color emission properties. The supramolecular tunable PPFOH aggregation in PVK matrix endows the complex with a smart energy transfer behavior to obtain the multi-color emissions. In stark contrast to PVK fibers, the emission color of PPFOH/PVK fibers with an efficient dispersion of PPFOH fluorophores at a proper dope ratio can be tuned in a wide spectrum of blue(0.1%), sky blue(0.5%), nearly white(1%), cyan(2%), green(5%) and yellow(10%). Besides, conductive behaviors of the microfiber were demonstrated in accompany with the increment of the doping ratio of PPFOH to PVK. Successful fabrication of polymer lightemitting diode(PLED) based on the blended electrospun fiber provided a further evidence of its excellent electrical property for potential applications in optoelectronic devices.  相似文献   

17.
Microfibers, a type of long, thin, and flexible material, can be assembled into functional 3D structures by folding, binding, and weaving. As a novel spinning method, combining microfluidic technology and wet spinning, microfluidic spinning technology can precisely control the size, morphology, structure, and composition of the microfibers. Particularly, the process is mild and rapid, which is suitable for preparing microfibers using biocompatible materials and without affecting the viability of cells encapsulated. Furthermore, owing to the controllability of microfluidic spinning, microfibers with well-defined structures (such as hollow structures) will contribute to the exchange of nutrients or guide cell orientation. Thus, this method is often used to fabricate microfibers as cell scaffolds for cell encapsulation or adhesion and can be further applied to biomimetic fibrous tissues. In this review, the focus is on different fiber structures prepared by microfluidic spinning technology, including solid, hollow, and heterogeneous structures, generated from three essential elements: spinning platform, fiber composition, and solidification methods. Furthermore, the application of microfibers is described with different structures in tissue engineering, such as blood vessels, skeletal muscle, bone, nerves, and lung bronchi. Finally, the challenges and future development prospects of microfluidic spinning technology in tissue engineering applications are discussed.  相似文献   

18.
Bimodal fiber meshes with fiber diameters differing by one order of magnitude, are electrospun in a simple one‐step process, using a standard single syringe electrospin setup. The nano‐ and microfiber meshes combine the benefits of nanofibers (cell adhesion, proliferation) with those of microfibers (open structure, large pore size) and are therefore interesting as scaffolds for cellular infiltration.

  相似文献   


19.
Polyethylene (PE) fibers were prepared by ethylene extrusion polymerization with an MCM‐41‐supported titanocene catalyst. The morphological and mechanical properties of these nascent PE fibers were investigated. Three levels of fibrous morphologies were identified in the fiber samples through an extensive scanning electron microscopy study. Extended‐chain PE nanofibrils with diameters of about 60 nm were the major morphological units present in the fiber structure. The nanofibrils were parallel‐packed into individual microfibers with diameters of about 1–30 μm. The microfibers were further aggregated irregularly into fiber aggregates and bundles. In comparison with commercial PE fibers and data reported in the literature, the individual microfibers produced in situ via ethylene extrusion polymerization without posttreatment exhibited a high tensile strength (0.3–1.0 GPa), a low tensile modulus (3.0–7.0 GPa), and a high elongation at break (8.5–20%) at 35 °C. The defects in the alignment of the nanofibrils were believed to be the major reason for the low modulus values. It was also found that a slight tensile drawing could increase the microfiber strength and modulus. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2433–2443, 2003  相似文献   

20.
Poly(l-lactic acid) (PLLA) nonwoven fabric was obtained by using a carbon dioxide laser-thinning method. The obtained PLLA nonwoven fabric was made of endless microfibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling an airflow rate supplied to the air jet, a supplying speed of an original fiber into a laser-irradiating point, and laser intensity. When the microfiber prepared by irradiating the laser operated at a laser intensity of 66 W cm−2 to the original fiber supplied at Ss = 0.1 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with an average diameter of 3.4 μm was obtained. The obtained microfiber had a degree of crystallinity of 45%, and the degree of crystal orientation of 84%. The existence of highly oriented crystallites suggests that a flow-induced crystallization occurred during the laser-thinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号