首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We have studied spin-dependent charge transfer dynamics in wirelike donor-bridge-acceptor (D-B-A) molecules comprising a phenothiazine (PTZ) donor, an oligo(2,7-fluorene) (FL(n)) bridge, and a perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptor, PTZ-FL(3)-PDI (1) and PTZ-FL(4)-PDI (2), dissolved in the magnetic field-aligned nematic phase of 4-cyano-4'-n-pentylbiphenyl (5CB) at 295 K. Time-resolved EPR spectroscopy using both continuous wave and pulsed microwaves shows that the photogenerated radical pairs (RPs), PTZ(+?)-FL(3)-PDI(-?) and PTZ(+?)-FL(4)-PDI(-?), recombine much faster from the singlet RP manifold than the triplet RP manifold. When a strong resonant microwave π pulse is applied following RP photogeneration in 1 and 2, the RP lifetimes increase about 50-fold as indicated by electron spin-echo detection. This result shows that the RP lifetime can be greatly extended by rapidly switching off fast triplet RP recombination.  相似文献   

2.
A bichromophoric electron donor-acceptor molecule composed of a zinc tetraphenylporphyrin (ZnTPP) surrounded by four perylene-3,4:9,10-bis(dicarboximide)(PDI) chromophores (ZnTPP-PDI(4)) was synthesized. The properties of this molecule were compared to a reference molecule having ZnTPP covalently bound to a single PDI (ZnTPP-PDI). In toluene, ZnTPP-PDI(4) self-assembles into monodisperse aggregates of five molecules arranged in a columnar stack, (ZnTPP-PDI(4))(5). The monodisperse nature of this assembly contrasts sharply with previously reported ZnTPP-PDI(4) derivatives having 1,7-bis(3,5-di-t-butylphenoxy) groups (ZnTPP-PPDI(4)). The size and structure of this assembly in solution was determined by small angle X-ray scattering (SAXS) using a high flux synchrotron X-ray source. The ZnTPP-PDI reference molecule does not aggregate. Femtosecond transient absorption spectroscopy shows that laser excitation of both ZnTPP-PDI and (ZnTPP-PDI(4))(5) results in quantitative formation of ZnTPP(+*)-PDI(-*) radical ion pairs in a few picoseconds. The transient absorption spectra of (ZnTPP-PDI(4))(5) suggest that the PDI(-*) radicals interact strongly with adjacent PDI molecules within the columnar stack. Charge recombination occurs more slowly within (ZnTPP-PDI(4))(5)(tau= 4.8 ns) than it does in ZnTPP-PDI (tau= 3.0 ns) producing mostly ground state as well as a modest yield of the lowest triplet state of PDI ((3*)PDI). Formation of (3*)PDI occurs by rapid spin-orbit induced intersystem crossing (SO-ISC) directly from the singlet radical ion pair as evidenced by the electron spin polarization pattern exhibited by its time-resolved electron paramagnetic resonance spectrum.  相似文献   

3.
The temperature dependence of intramolecular charge separation in a series of donor-bridge-acceptor molecules having phenothiazine (PTZ) donors, 2,7-oligofluorene FL(n) (n = 1-4) bridges, and perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptors was studied. Photoexcitation of PDI to its lowest excited singlet state results in oxidation of PTZ via the FL(n) bridge. In toluene, the temperature dependence of the charge separation rate constants for PTZ-FL(n)-PDI, (n = 1-4) is relatively weak and is successfully described by the semiclassical Marcus equation. The activation energies for charge separation suggest that bridge charge carrier injection is not the rate limiting step. The difficulty of using temperature and length dependence to differentiate hopping and superexchange is discussed, with difficulties in the latter topic explored via an extension of a kinetic model proposed by Bixon and Jortner.  相似文献   

4.
Perylene-3,4:9,10-bis(dicarboximide) (PDI) and its derivatives are robust organic dyes that strongly absorb visible light and display a strong tendency to self-assemble into ordered aggregates, having significant interest as photoactive materials in a wide variety of organic electronics. To better understand the nature of the electronics states produced by photoexcitation of such aggregates, the photophysics of a series of covalent, cofacially oriented, pi-stacked dimers and trimers of PDI and 1,7-bis(3',5'-di-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) were characterized using both time-resolved absorption and fluorescence spectroscopy. The covalent linkage between the chromophores was accomplished using 9,9-dimethylxanthene spacers. Placing n-octyl groups on the imide nitrogen atoms at the end of the PDI chromophores not attached to the xanthene spacer results in PDI dimers having near optimal pi-stacking, leading to formation of a low-energy excimer-like state, while substituting the more sterically demanding 12-tricosanyl group on the imides causes deviations from the optimum that result in slower formation of an excimer-like excited state having somewhat higher energy. By comparison, PPDI dimers having terminal n-octyl imide groups have two isomers, whose photophysical properties depend on the ability of the phenoxy groups at the 1,7-positions to modify the pi stacking of the PPDI molecules. In general, disruption of optimal pi-stacking by steric interactions of the phenoxy side groups results in excimer-like states that are higher in energy. The corresponding lowest excited singlet states of the PDI and PPDI trimers are dimer-like in nature and suggest that structural distortions that accompany formation of the trimers are sufficient to confine the electronic interaction on two chromophores within these systems. This further suggests that it may be useful to build into oligomeric PDI and PPDI systems some degree of flexibility that allows the structural relaxations necessary to promote electronic interactions between multiple chromophores.  相似文献   

5.
We report the synthesis and photophysical characterization of a multichromophore array, (Z3PN)4PDI, consisting of four zinc 5-phenyl-10,15,20-tri(n-pentyl)porphyrins (Z3PN) attached to the 1,7,N,N'-positions of perylene-3,4:9,10-bis(dicarboximide) (PDI). The dynamics of energy and charge transport within this system were compared to those of two model compounds, N,N'-(Z3PN)2PDI and 1,7-(Z3PN)2PDI. The symmetry of the lowest unoccupied and highest occupied molecular orbitals of PDI results in significantly different electronic couplings between Z3PN and PDI when they are connected at the 1,7-positions vs the N,N'-positions of PDI. This results in two distinct pathways for electron transfer in (Z3PN)4PDI. Using a combination of metal-ligand binding with the bidentate ligand 1,4-diazabicyclo[2.2.2.]octane (DABCO) and pi-pi stacking, (Z3PN4)PDI forms a supramolecular assembly, [[(Z3PN)4PDI]2-DABCO4]2, in toluene solution. The structure of this hierarchical assembly is characterized with the use of solution-phase X-ray scattering techniques and demonstrates both efficient light harvesting and facile charge separation and transport using multiple pathways.  相似文献   

6.
Condensation of 3,4,5-tris(n-dodecyloxy)aniline with the green chromophore 1,7-bis(N-pyrrolidinyl)perylene-3,4;9,10-tetracarboxylic dianhydride yields N,N'-bis(3,4,5-tris(n-dodecyloxy)phenyl)-1,7-bis(N-pyrrolidinyl)perylene-3,4;9,10-bis(dicarboximide), 5PDI-TAP, which absorbs light strongly from 550 to 750 nm. 5PDI-TAP dissolves readily in methylcyclohexane (MCH), resulting in self-assembly into H-aggregates. Small-angle X-ray scattering data obtained on 10(-4) M solutions of 5PDI-TAP in MCH show that the aggregates are pi-stacked monodisperse pentamers. Femtosecond transient absorption spectroscopy on solutions of (5PDI-TAP)5 in MCH shows evidence of charge separation occurring with tau < or = 150 fs between adjacent stacked members of 5PDI-TAP within the pentamer followed by charge recombination with tau = 860 ps. Transmission electron microscopy of 5PDI-TAP films cast from solution show isolated bundles of columnar aggregates. (5PDI-TAP)n is a potentially useful material for organic photovoltaics because efficient photoinduced charge generation is an intrinsic property of the assembly.  相似文献   

7.
Self-assembly of robust perylenediimide chromophores is used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation. The structure consists of four 1,7-(3',5'-di-tert-butylphenoxy)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (PDI) molecules attached to a single 1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (5PDI) core, which self-assembles to form (5PDI-PDI4)2 in toluene. The system is characterized using both structural methods (NMR, SAXS, mass spectroscopy, and GPC) and photophysical methods (UV-vis, time-resolved fluorescence, and femtosecond transient absorption spectroscopy). Energy transfer from (PDI)2 to (5PDI)2 occurs with tau = 21 ps, followed by excited-state symmetry breaking of 1*(5PDI)2 to produce 5PDI*+-5PDI*- quantitatively with tau = 7 ps. The ion pair recombines with tau = 420 ps. Electron transfer occurs only in the dimeric system and does not occur in the disassembled monomer, thus mimicking both antenna and special pair function in photosynthesis.  相似文献   

8.
Light harvesting in photosynthetic antenna proteins involves a series of highly efficient ultrafast energy transfers between spectroscopically different populations of chlorophylls. Several strategies have recently been employed to mimic this natural energy transfer process, including polymers, dendrimers, and oligomeric porphyrin arrays linked by covalent bonds or by self-assembly. In all of these systems, excitation energy transfer occurs from one molecule to another, while very few of them involve energy transfer from one very strongly interacting chromophore aggregate to another such aggregate. Here we report the synthesis and characterization of a covalent zinc phthalocyanine-2,3,9,10,16,17,23,24-octacarboxytetraimide in which all four imide nitrogen atoms are substituted with N-octyl-N'-(4-aminophenyl)-1,7(3',5'di-tert-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (ZnPcIm4-PDI4). The individual molecules self-assemble into stacked heptamers in solution as evidenced by small-angle X-ray scattering and form long fibrous structures in the solid as evidenced by TEM. The ZnPcIm4 and PDI molecules both stack in register with the same components in an adjacent covalent building block. Ultrafast energy transfer occurs with tau = 1.3 ps from the aggregated peripheral PDI chromophores to the core ZnPcIm4 chromophore aggregate. Exciton hopping between the ZnPcIm4 chromophores occurs with tau = 160 fs.  相似文献   

9.
Ando S  Facchetti A  Marks TJ 《Organic letters》2010,12(21):4852-4855
Core-cyanated perylene-3,4;9,10-bis(carboxyimide) derivatives N-functionalized with tethered anthracenes (PDI3A-CN(2), PDI4A-CN(2)) and the corresponding solution-processable cycloadduct precursors (PDI3A-CA-CN(2), PDI4A-CA-CN(2)) were synthesized and their optical, electrochemical, and thermal properties characterized. These derivatives exhibit HOMO-LUMO energy gaps of ~2.1-2.3 eV and first reduction potentials between -50 and -150 mV versus SCE. The PDI3A-CN(2) and PDI4A-CN(2) cycloadducts are soluble in common organic solvents (>50 mg/mL), and the corresponding spin-coated films are converted to PDI3A-CN(2) and PDI4A-CN(2) films upon thermal annealing.  相似文献   

10.
A donor-acceptor dyad system involving tetrathiafulvalene (TTF) as donor attached by a flexible spacer to perylene-3,4:9,10-bis(dicarboximide) (PDI) as acceptor was synthesized and characterized. The strategy used the preliminary synthesis of an unsymmetrical PDI unit bearing an alcohol functionality as anchor group. Single-crystal analysis revealed a highly organized arrangement in which all PDI molecules are packed in a noncentrosymmetrical pattern. It was shown that the fluorescence emission intensity of the TTF-PDI dyad can be reversibly tuned depending on the oxidation states of the TTF unit. This behavior is attributed to peculiar properties of TTF linked to a PDI acceptor, which fluoresces intrinsically. Consequently, this dyad can be considered as a new reversible fluorescence-redox dependent molecular system.  相似文献   

11.
We report on two multi-chromophore building blocks that self-assemble in solution and on surfaces into supramolecular light-harvesting arrays. Each building block is based on perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophores. In one building block, N-phenyl PDI chromophores are attached at their para positions to both nitrogens and the 3 and 6 carbons of pyromellitimide to form a cross-shaped molecule (PI-PDI(4)). In the second building block, N-phenyl PDI chromophores are attached at their para positions to both nitrogens and the 1 and 7 carbons of a fifth PDI to produce a saddle-shaped molecule (PDI(5)). These molecules self-assemble into partially ordered dimeric structures (PI-PDI(4))(2) and (PDI(5))(2) in toluene and 2-methyltetrahydrofuran solutions with the PDI molecules approximately parallel to one another primarily due to pi-pi interactions between adjacent PDI chromophores. On hydrophobic surfaces, PDI(5) grows into rod-shaped nanostructures of average length 130 nm as revealed by atomic force microscopy. Photoexcitation of these supramolecular dimers in solution gives direct evidence of strong pi-pi interactions between the excited PDI chromophore and other PDI molecules nearby based on the observed formation of an excimer-like state in <130 fs with a lifetime of about 20 ns. Multiple photoexcitations of the supramolecular dimers lead to fast singlet-singlet annihilation of the excimer-like state, which occurs with exciton hopping times of about 5 ps, which are comparable to those observed in photosynthetic light-harvesting proteins from green plants.  相似文献   

12.
In the present paper, photoinduced processes in the dyad molecules of pentathiophene (5T) and perylene-3,4:9,10-bis(dicarboximide) (PDI) with a flexible alkyl linker (propyl or hexyl) were investigated by using femtosecond laser flash spectroscopy in various solvents. Since absorption of 5T covers the wavelength region where absorption of PDI has minima and fluorescence of 5T overlaps with absorption of PDI, combination of 5T and PDI is favorable to achieve light energy harvesting as well as efficient electron transfer. When the sample was excited at the PDI moiety of the dyad, charge separation occurred almost quantitatively even in nonpolar solvent as well as in polar solvents. When the 5T moiety of the dyad was excited, efficient energy transfer to the PDI moiety from which charge separation occurred was confirmed, indicating that 5T acts as an antenna of the charge separation system, like a photosynthesis system of a plant. On the basis of Forster and Marcus theories and the estimated energy and electron-transfer rates, it was indicated that these dyads tend to take a folded structure in all solvents investigated.  相似文献   

13.
1,6- and 1,7-bis(n-octylamino)perylene-3,4:9,10-bis(dicarboximide) were synthesized by reaction of n-octylamine with the corresponding dibromo compounds. These compounds display intense charge-transfer optical transitions in the visible spectrum (approximately 550-750 nm) and fluoresce weakly (Phi(F) < 0.06). Cyclic voltammetry reveals that each chromophore undergoes facile and reversible oxidation and reduction. Spectroelectrochemical studies show that the radical cations of these chromophores are stable and show no signs of deprotonation of the secondary amines. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies of the chemically generated radical cations of these chromophores corroborate the spectroelectrochemical data by showing that the radical cations persist for days at room temperature in methylene chloride solution. These experiments and complementary density functional theory (DFT) calculations provide a comprehensive picture of the molecular orbitals, spin density distributions, and geometries of the radical cations. The redox properties and stability of these alkylamino-functionalized perylene compounds make them a valuable addition to the family of robust perylene-based chromophores that can be used to develop new photoactive charge transport materials.  相似文献   

14.
Novel covalent fullerene C(60)-perylene-3,4:9,10-bis(dicarboximide) (C(60)-PDI) dyads (1-4) were synthesized and characterized. Their electrochemical and photophysical properties were investigated. Electrochemical studies show that the reduction potential of PDI can be tuned relative to C(60) by molecular engineering through altering the substituents on the PDI bay region. It was demonstrated using steady-state and time-resolved spectroscopy that a quantitative, photoinduced energy transfer takes place from the PDI moiety, acting as a light-harvesting antenna, to the C(60) unit, playing the role of energy acceptor. The bay-substitution (tetrachloro [1 and 2] or tetra-tert-butylphenoxy [3 and 4]) of the PDI antenna and the linkage length (C(2) [1 and 3] or C(5) [2 and 4]) to the C(60) acceptor are important parameters in the kinetics of energy transfer. Femtosecond transient absorption spectroscopy indicates singlet-singlet energy-transfer times (from the PDI to the C(60) unit) of 0.4 and 5 ps (1), 4.5 and 27 ps (2), 0.8 and 12 ps (3), and 7 and 50 ps (4), these values being ascribed to two different conformers for each C(60)-PDI system. Subsequent triplet-triplet energy-transfer times (from the C(60) unit to the PDI) are slower and in the order of 0.8 ns (1), 6.2 ns (2), 2.7 ns (3), and 9 ns (4). Nanosecond transient absorption spectroscopy of final PDI triplet states show a marked influence of the bay substitution (tetrachloro- or tetra-tert-butylphenoxy), and triplet-state lifetimes (10-20 micros) and the PDI triplet quantum yields (0.75-0.52) were estimated. The spectroscopy showed no substantial solvent effect upon comparing toluene (non-polar) to benzonitrile (polar), indicating that no electron transfer is occurring in these systems.  相似文献   

15.
Photoexcitation of a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Phn), n = 1-5, and A= perylene-3,4:9,10-bis(dicarboximide) (PDI) results in rapid electron transfer to produce 1(PTZ+*-Phn-PDI-*). Time-resolved EPR (TREPR) studies of the photogenerated radical pairs (RPs) show that above 150 K, when n = 2-5, the radical pair-intersystem crossing mechanism (RP-ISC) produces spin-correlated radical ion pairs having electron spin polarization patterns indicating that the spin-spin exchange interaction in the radical ion pair is positive, 2J > 0, and is temperature dependent. This temperature dependence is most likely due to structural changes of the p-phenylene bridge. Charge recombination in the RPs generates PTZ-Phn-3*PDI, which exhibits a spin-polarized signal similar to that observed in photosynthetic reaction-center proteins and some biomimetic systems. At temperatures below 150 K and/or at shorter donor-acceptor distances, e.g., when n = 1, PTZ-Phn-3*PDI is also formed from a competitive spin-orbit-intersystem crossing (SO-ISC) mechanism that is a result of direct charge recombination: 1(PTZ+*-Phn-PDI-*) --> PTZ-Phn-3*PDI. This SO-ISC mechanism requires the initial RP intermediate and depends strongly on the orientation of the molecular orbitals involved in the charge recombination as well as the magnitude of 2J.  相似文献   

16.
Functional molecular wires are essential for the development of molecular electronics. Charge transport through molecules occurs primarily by means of two mechanisms, coherent superexchange and incoherent charge hopping. Rates of charge transport through molecules in which superexchange dominates decrease approximately exponentially with distance, which precludes using these molecules as effective molecular wires. In contrast, charge transport rates through molecules in which incoherent charge hopping prevails should display nearly distance independent, wirelike behavior. We are now able to determine how each mechanism contributes to the overall charge transport characteristics of a donor-bridge-acceptor (D-B-A) system, where D = phenothiazine (PTZ), B = p-oligophenylene, and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), by measuring the interaction between two unpaired spins within the system's charge separated state via magnetic field effects on the yield of radical pair and triplet recombination product.  相似文献   

17.
Photoexcitation of chromophoric dimers constrained to a symmetric pi-stacked geometry by their molecular structure usually produces excimers independent of solvent polarity, while dimers with edge-to-edge perpendicular pi systems undergo excited-state symmetry breaking in highly polar solvents leading to intradimer charge separation. We present direct evidence for symmetry breaking in the lowest excited singlet state of a symmetric cofacial dimer of 1,7-bis(pyrrolidin-1'-yl)-perylene-3,4:9,10-bis(dicarboximide) (5PDI) in the low polarity solvent toluene to produce a radical ion pair quantitatively. This dimer, cof-5PDI2, was synthesized by attaching two 5PDI chromophores via imide groups to a xanthene spacer. For comparison, a linear symmetric dimer, lin-5PDI2, was prepared in which the 5PDI chromophores are linked end-to-end via a N-N single bond between their imides. The edge-to-edge pi systems of the 5PDI chromophores within lin-5PDI2 are perpendicular to one another. Ground-state absorption spectra of both 5PDI dimers show exciton coupling, which is consistent with the orientation of the 5PDI chromophores relative to one another. Ultrafast transient absorption spectroscopy following excitation of the dimers with 700 nm, 100 fs laser pulses shows that quantitative intradimer electron transfer occurs in cof-5PDI2 in toluene with tau = 0.17 ps followed by charge recombination to the ground state with tau = 222 ps. Similar measurements on lin-5PDI2 reveal that photoinduced electron transfer does not occur in toluene, but occurs in more polar solvents such as 2-methyltetrahydrofuran, wherein tau = 55 ps for charge separation and tau = 99 ps for charge recombination. Excited-state symmetry breaking in 5PDI dimers provides new routes to biomimetic charge separation and storage assemblies that can be more easily prepared and modified than those based on multiple tetrapyrrole macrocycles.  相似文献   

18.
Structural and electronic criteria for ambient stability in n-type organic materials for organic field-effect transistors (OFETs) are investigated by systematically varying LUMO energetics and molecular substituents of arylene diimide-based materials. Six OFETs on n+-Si/SiO2 substrates exhibit OFET response parameters as follows: N,N'-bis(n-octyl)perylene-3,4:9,10-bis(dicarboximide) (PDI-8): mu = 0.32 cm2 V(-1) s(-1), Vth = 55 V, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dibromoperylene-3,4:9,10-bis(dicarboximide) (PDI-8Br2): mu = 3 x 10(-5) cm2 V(-1) s(-1), Vth = 62 V, I(on)/I(off) = 10(3); N,N'-bis(n-octyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-bis(dicarboximide) (PDI-8Cl4): mu = 4 x 10(-3) cm2 V(-1) (s-1), Vth = 37 V, I(on)/I(off) = 10(4); N,N'-bis(n-octyl)-2-cyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN): mu = 4.7 x 10(-3) cm2 V(-1) s(-1), Vth = 28, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2): mu = 0.13 cm2 V(-1) s(-1), Vth = -14 V, I(on)/I(off) = 10(3); and N,N'-bis(n-octyl)-2,6-dicyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN2): mu = 0.15 cm2 V(-1) s(-1), Vth = -37 V, I(on)/I(off) = 10(2). Analysis of the molecular geometries and energetics in these materials reveals a correlation between electron mobility and substituent-induced arylene core distortion, while Vth and I(off) are generally affected by LUMO energetics. Our findings also indicate that resistance to ambient charge carrier trapping observed in films of N-(n-octyl)arylene diimides occurs at a molecular reduction potential more positive than approximately -0.1 V (vs SCE). OFET threshold voltage shifts between vacuum and ambient atmosphere operation suggest that, at E(red1) < -0.1 V, the interfacial trap density increases by greater than approximately 1 x 10(13) cm(-2), while, for semiconductors with E(red1) > -0.1 V, the trap density increase is negligible. OFETs fabricated with the present n-type materials having E(red1) > -0.1 V operate at conventional gate biases with minimal hysteresis in air. This reduction potential corresponds to an overpotential for the reaction of the charge carriers with O2 of approximately 0.6 V. N,N'-1H,1H-Perfluorobutyl derivatives of the perylene-based semiconductors were also synthesized and used to fabricate OFETs, resulting in air-stable devices for all fluorocarbon-substituted materials, despite generally having E(red1) < -0.1 V. This behavior is consistent with a fluorocarbon-based O2 barrier mechanism. OFET cycling measurements in air for dicyanated vs fluorinated materials demonstrate that energetic stabilization of the charge carriers results in greater device longevity in comparison to the OFET degradation observed in air-stable semiconductors with fluorocarbon barriers.  相似文献   

19.
We observe well-defined regions of superexchange and thermally activated hopping in the temperature dependence of charge recombination (CR) in a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Ph(n)), n = 1-4, and A = perylene-3,4:9,10-bis(dicarboximide) (PDI). A fit to the thermally activated CR rates of the n = 3 and n = 4 compounds yields activation barriers of 1290 and 2030 cm(-1), respectively, which match closely with theoretically predicted and experimentally observed barriers for the planarization of terphenyl and quaterphenyl. Negative activation of CR in the temperature regions dominated by superexchange charge transport is the result of a fast conformational equilibrium that increasingly depopulates the reactive state for CR as temperature is increased. The temperature dependence of the effective donor-acceptor superexchange coupling, V(DA), measured using magnetic field effects on the efficiency of the charge recombination process, shows that CR occurs out of the conformation with lower V(DA) via the energetically favored triplet pathway.  相似文献   

20.
The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI(2). The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from (1*)Chl to PI to form Chl(+?)-PI(-?)-NDI and Chl(+?)-PI(-?)-NDI(2). This initial charge separation is followed by a rapid charge shift from PI(-?) to NDI and subsequent charge recombination of Chl(+?)-PI-NDI(-?) and Chl(+?)-PI-(NDI)NDI(-?) on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI(2) cyclic tetramer (τ(CR) = 30 ± 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks (τ(CR) = 10 ± 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号