首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The collective dynamics of coupled two-dimensional chaotic maps on complex networks is known to exhibit a rich variety of emergent properties which crucially depend on the underlying network topology. We investigate the collective motion of Chirikov standard maps interacting with time delay through directed links of gene regulatory network of bacterium Escherichia coli. Departures from strongly chaotic behavior of the isolated maps are studied in relation to different coupling forms and strengths. At smaller coupling intensities the network induces stable and coherent emergent dynamics. The unstable behavior appearing with increase of coupling strength remains confined within a connected subnetwork. For the appropriate coupling, network exhibits statistically robust self-organized dynamics in a weakly chaotic regime.  相似文献   

2.
Conventional von Neumann computers have difficulty in solving complex and ill-posed real-world problems. However, living organisms often face such problems in real life, and must quickly obtain suitable solutions through physical, dynamical, and collective computations involving vast assemblies of neurons. These highly parallel computations through high-dimensional dynamics (computation through dynamics) are completely different from the numerical computations on von Neumann computers (computation through algorithms). In this paper, we explore a novel computational mechanism with high-dimensional physical chaotic neuro-dynamics. We physically constructed two hardware prototypes using analog chaotic-neuron integrated circuits. These systems combine analog computations with chaotic neuro-dynamics and digital computation through algorithms. We used quadratic assignment problems (QAPs) as benchmarks. The first prototype utilizes an analog chaotic neural network with 800-dimensional dynamics. An external algorithm constructs a solution for a QAP using the internal dynamics of the network. In the second system, 300-dimensional analog chaotic neuro-dynamics drive a tabu-search algorithm. We demonstrate experimentally that both systems efficiently solve QAPs through physical chaotic dynamics. We also qualitatively analyze the underlying mechanism of the highly parallel and collective analog computations by observing global and local dynamics. Furthermore, we introduce spatial and temporal mutual information to quantitatively evaluate the system dynamics. The experimental results confirm the validity and efficiency of the proposed computational paradigm with the physical analog chaotic neuro-dynamics.  相似文献   

3.
Hai-Fang Liu 《中国物理 B》2021,30(11):110503-110503
Autonomous Boolean networks (ABNs) have been successfully applied to the generation of random number due to their complex nonlinear dynamics and convenient on-chip integration. Most of the ABNs used for random number generators show a symmetric topology, despite their oscillations dependent on the inconsistency of time delays along links. To address this issue, we suggest an asymmetrical autonomous Boolean network (aABN) and show numerically that it provides large amplitude oscillations by using equal time delays along links and the same logical gates. Experimental results show that the chaotic features of aABN are comparable to those of symmetric ABNs despite their being made of fewer nodes. Finally, we put forward a random number generator based on aABN and show that it generates the random numbers passing the NIST test suite at 100 Mbits/s. The unpredictability of the random numbers is analyzed by restarting the random number generator repeatedly. The aABN may replace symmetrical ABNs in many applications using fewer nodes and, in turn, reducing power consumption.  相似文献   

4.
Based on the signals from oil–water two-phase flow experiment, we construct and analyze recurrence networks to characterize the dynamic behavior of different flow patterns. We first take a chaotic time series as an example to demonstrate that the local property of recurrence network allows characterizing chaotic dynamics. Then we construct recurrence networks for different oil-in-water flow patterns and investigate the local property of each constructed network, respectively. The results indicate that the local topological statistic of recurrence network is very sensitive to the transitions of flow patterns and allows uncovering the dynamic flow behavior associated with chaotic unstable periodic orbits.  相似文献   

5.
We study experimentally the collective dynamics of two delay-coupled semiconductor lasers. The lasers are coupled by mutual injection of their emitted light beams, at a distance for which coupling delay times are non-negligible. This system is known to exhibit lag synchronization, with one laser leading and the other one lagging the dynamics. Our setup is designed such that light travels along different paths in the two coupling directions, which allows independent control of the two coupling strengths. A comparison of unidirectional and bidirectional coupling reveals that the leader-laggard roles can be switched by acting upon the coupling architecture of the system. Additionally, numerical simulations show that a more extensive control of the network architecture can also lead to changes in the dynamics of the system. Finally, we discuss the relevance of these results for bidirectional chaotic communications.  相似文献   

6.
The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine higher order behavior of the steady state system, which predicts that networks with more homogeneous degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.  相似文献   

7.
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling delay along the network links and time scale at which the topology changes. Concentrating on a linearized model, we develop an analytical theory for the stability of a synchronized solution. In two limit cases, the system can be reduced to an “effective” topology: in the fast switching approximation, when the network fluctuations are much faster than the internal time scale and the coupling delay, the effective network topology is the arithmetic mean over the different topologies. In the slow network limit, when the network fluctuation time scale is equal to the coupling delay, the effective adjacency matrix is the geometric mean over the adjacency matrices of the different topologies. In the intermediate regime, the system shows a sensitive dependence on the ratio of time scales, and on the specific topologies, reproduced as well by numerical simulations. Our results are shown to describe the synchronization properties of fluctuating networks of delay-coupled chaotic maps.  相似文献   

8.
We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function.  相似文献   

9.
《Physica A》2006,371(2):790-794
We investigate collective behaviors of coupled phase oscillators on an extended network model which can develop two fundamentally different topologies, scale-free or exponential. Each component of the network is assumed as an oscillator and that each interacts with the others following the Kuramoto model. The order parameters that measure synchronization of phases and frequencies are computed by means of dynamic simulations. It is found that system's collective behaviors exhibit strong dependence on local events: addition of new links will improve network synchronizability while rewiring of links will decrease synchronization.  相似文献   

10.
Catherine Kyrtsou 《Physica A》2008,387(27):6785-6789
In this paper, we analyze the rich dynamic properties of the noisy chaotic model developed by Kyrtsou [C. Kyrtsou, Evidence for neglected linearity in noisy chaotic models, International Journal of Bifurcation and Chaos 15 (10) (2005)] considering homoskedastic errors, with the aim of deriving information about possible links between noisy chaotic dynamics and ARCH effects. With the joint application of the Engle [R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50 (1982) 987-1007] and McLeod-Li [A.I. McLeod, W.K. Li, Diagnostic checking ARMA time series models using squared-residuals autocorrelations, Journal of Time Series Analysis 4 (1983) 269-273] tests for non-linearity in the second moment, we attempt to show how highly non-linear models can exhibit heteroskedasticity when no heteroskedastic structure is assumed by construction.  相似文献   

11.
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.  相似文献   

12.
13.
It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fractions of the regular coupling connections were replaced by random links. Here we investigate the effects of different kinds of parametric fluctuations on the robustness of this spatiotemporal fixed point regime. In particular we study the spatiotemporal dynamics of the network with noisy interaction parameters, namely fluctuating fraction of random links and fluctuating coupling strengths. We consider three types of fluctuations: (i) noisy in time, but homogeneous in space; (ii) noisy in space, but fixed in time; (iii) noisy in both space and time. We find that the effect of different kinds of parametric noise on the dynamics is quite distinct: quenched spatial fluctuations are the most detrimental to spatiotemporal regularity; spatiotemporal fluctuations yield phenomena similar to that observed when parameters are held constant at the mean value, and interestingly, spatiotemporal regularity is most robust under spatially uniform temporal fluctuations, which in fact yields a larger fixed point range than that obtained under constant mean-value parameters.  相似文献   

14.
Experiments on the nontrivial collective dynamics and phase synchronization of populations of nonidentical chaotic electrochemical oscillators are presented. Without added coupling no deviation from the law of large numbers is observed. Deviations do arise with weak global or short-range coupling; large, irregular, and periodic mean field oscillations occur along with (partial) phase synchronization.  相似文献   

15.
Through adding a nonlinear self-feedback term in the evolution equations of nerual network,we introduced a transiently chaotic neural network model.In order to utilize the transiently chaotic dynamics mechanism in optimization problem efficiently,we have analyzed the dynamical pocedure of the transiently chaotic neural network model and studied the function of the crucial bifurcation parameter which governs the chaotic behavior of the system.Based on the dynamical analysis of the transiently chaotic neural network model,Chaotic annealing algorithm is also examined and improved.As an example,we applied chaotic annealing method to the traveling salesman problem and obtained good results.  相似文献   

16.
We study a network of coupled logistic maps whose interactions occur with a certain distribution of delay times. The local dynamics is chaotic in the absence of coupling and thus the network is a paradigm of a complex system. There are two regimes of synchronization, depending on the distribution of delays: when the delays are sufficiently heterogeneous the network synchronizes on a steady-state (that is unstable for the uncoupled maps); when the delays are homogeneous, it synchronizes in a time-dependent state (that is either periodic or chaotic). Using two global indicators we quantify the synchronizability on the two regimes, focusing on the roles of the network connectivity and the topology. The connectivity is measured in terms of the average number of links per node, and we consider various topologies (scale-free, small-world, star, and nearest-neighbor with and without a central hub). With weak connectivity and weak coupling strength, the network displays an irregular oscillatory dynamics that is largely independent of the topology and of the delay distribution. With heterogeneous delays, we find a threshold connectivity level below which the network does not synchronize, regardless of the network size. This minimum average number of neighbors seems to be independent of the delay distribution. We also analyze the effect of self-feedback loops and find that they have an impact on the synchronizability of small networks with large coupling strengths. The influence of feedback, enhancing or degrading synchronization, depends on the topology and on the distribution of delays.  相似文献   

17.
Jaewan Yoo  J.S. Lee  B. Kahng 《Physica A》2011,390(23-24):4571-4576
As people travel, human contact networks may change topologically from time to time. In this paper, we study the problem of epidemic spreading on this kind of dynamic network, specifically the one in which the rewiring dynamics of edges are carried out to preserve the degree of each node (called fitness rewiring). We also consider the adaptive rewiring of edges, which encourages disconnections from and discourages connections to infected nodes and eventually leads to the isolation of the infected from the susceptible with only a small number of links between them. We find that while the threshold of epidemic spreading remains unchanged and prevalence increases in the fitness rewiring dynamics, meeting of the epidemic threshold is delayed and prevalence is reduced (if adaptive dynamics are included). To understand these different behaviors, we introduce a new measure called the “mean change of effective links” and find that creation and deletion of pathways for pathogen transmission are the dominant factors in fitness and adaptive rewiring dynamics, respectively.  相似文献   

18.
王立明  吴峰 《物理学报》2014,63(5):50503-050503
在由分数阶双稳态振子通过最近邻耦合构成的环形网络中研究了振子的同步与耦合方式以及初始条件结构的关系.通过选择初始条件结构、耦合方式和强度,可以控制网络呈现振幅死亡同步态、振幅死亡非同步态、混沌同步态和混沌非同步态等多种动力学行为.参数平面区域ε3-ε2内的最大条件Lyapunov指数和最大Lyapunov指数的等高线进一步表明,y与z方向的耦合竞争对网络的动力学行为的影响结果敏感地依赖于网络的初始条件结构.  相似文献   

19.
We study the effects of linking constraints on stability, efficiency and network formation. An exogenous “link-constraining system” specifies the admissible links. It is assumed that each player may initiate links only with players within a specified set of players, thus restricting the feasible strategies and networks. In this setting, we examine the impact of such constraints on stable/efficient architectures and on dynamics.  相似文献   

20.
Gao JB  Rao NS  Hu J  Ai J 《Physical review letters》2005,94(19):198702
We show that the dynamics of transmission control protocol (TCP) may often be chaotic via a quasiperiodic route consisting of more than two independent frequencies, by employing a commonly used ns-2 network simulator. To capture the essence of the additive increase and multiplicative decrease mechanism of TCP congestion control, and to qualitatively describe why and when chaos may occur in TCP dynamics, we develop a 1D discrete map. The relevance of these chaotic transport dynamics to real Internet connections is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号