首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Raman spectra have been measured for aqueous Al2(SO4)3 solutions from 25 to hydrothermal conditions at 184°C under steam saturation. The Raman spectrum at 184°C contained four polarized bands in the S–O stretching wavenumber range, which suggest that a new sulfato complex, where sulfate acts as a bridging ligand (possibly bidentate or tridentate), is formed in solution, in addition to a 1:1 aluminium(III) sulfato complex, where sulfate is monodentate, which is the only ion pair identified at room temperature. Under hydrothermal conditions, it was possible to observe the hydrolysis of aluminium(III) aqua ion by measuring the relative intensity of bands due to SO2? 4 and HSO4 ?, according to the coupled equilibrium reaction [Al(OH2)6]3+ + SO4 2? ? [Al(OH2)5OH]2+ + HSO4 ?. The precipitate in equilibrium with the solution at 184°C could be characterized as a hydronium alunite, (H3O)Al3(SO4)2(OH)6, by chemical analysis, X-ray diffraction, and Raman and infrared spectroscopy.  相似文献   

2.
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100–105 °C and 185–205 °C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot-stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH)·3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4·5H2O → arhbarite Cu2Mg(AsO4)(OH)3. HSRS inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm?1 assigned to the ν1 AsO4 3? symmetric stretching vibration and 801, 822, and 871 cm?1 assigned to the ν3 AsO4 3? (A1) antisymmetric stretching vibrations. A distinct band shift is observed upon heating to 275 °C. At 275 °C, the four Raman bands are resolved at 762, 810, 837, and 862 cm?1. Further heating results in the diminution of the intensity in the Raman spectra, and this is attributed to sublimation of the arsenate mineral. HSRS is the most useful technique for studying the thermal stability of minerals, especially when only very small amounts of mineral are available.  相似文献   

3.
Summary A combination of thermogravimetry and hot stage Raman spectroscopy has been used to study the thermal decomposition of the synthesised zinc substituted takovite Zn6Al2CO3(OH)16·4H2O. Thermogravimetry reveals seven mass loss steps at 52, 135, 174, 237, 265, 590 and ~780°C. MS shows that the first two mass loss steps are due to dehydration, the next two to dehydroxylation and the mass loss step at 265°C to combined dehydroxylation and decarbonation. The two higher mass loss steps are attributed to decarbonation. Raman spectra of the hydroxyl stretching region over the 25 to 200°C temperature range, enable identification of bands attributed to water stretching vibrations, MOH stretching modes and strongly hydrogen bonded CO32--water bands. CO32- symmetric stretching modes are observed at 1077 and 1060 cm-1. One possible model is that the band at 1077 cm-1is ascribed to the CO32- units bonded to one OH unit and the band at 1092 cm-1is due to the CO32- units bonded to two OH units from the Zn-takovite surface. Thermogravimetric analysis when combined with hot stage Raman spectroscopy forms a very powerful technique for the study of the thermal decomposition of minerals such as hydrotalcites.</o:p>  相似文献   

4.
Raman spectra of stearyl alcohol (n-C18H37OH) indicate that vibrational bands in both the skeletal optical (1000-1200 cm?1) and longitudinal acoustical (0–500 cm?1) regions are considerably perturbed by intermolecular hydrogen bonding. The zone interior skeletal stretching mode reflecting phonon dispersion in the v4 branch of the infinite polyethylene chain is found at 1105 cm?1, approximately 20 cm?1 higher than in the corresponding n-alkane. Similarly the single nodal longitudinal acoustical mode (LAM-1) is found shifted by 12 cm?1 to higher frequency when the expected “mass effect” produced by the ? OH group is considered. This shift is further increased to 16 cm?1 at ?100°C indicating a further perturbation on this accordion mode due to the increased strength of the hydrogen bond at the low temperatures. The positions of the higher multinodal vibrations, LAM-3 and LAM-5, are also perturbed by the hydrogen bond but by differing amounts. The observation of a low-frequency Raman-active LAM in polytetrahydrofuran [(? CH2CH2CH2CH2O? )n] is discussed in conjunction with the expected effects of hydrogen bonding at the lamellar surface.  相似文献   

5.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

6.
Summary A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of liebigite. Water is lost in two steps at 44 and 302°C. Two mass loss steps are observed for carbon dioxide evolution at 456 and 686°C. The product of the thermal decomposition was found to be a mixture of CaUO4 and Ca3UO6. The thermal decomposition of liebigite was followed by hot-stage Raman spectroscopy. Two Raman bands are observed in the 50°C spectrum at 3504 and 3318 cm-1 and shift to higher wavenumbers upon thermal treatment; no intensity remains in the bands above 300°C. Three bands assigned to the υ1 symmetric stretching modes of the (CO3)2- units are observed at 1094, 1087 and 1075 cm-1 in agreement with three structurally distinct (CO3)2- units. At 100°C, two bands are found at 1089 and 1078 cm-1. Thermogravimetric analysis is undertaken as dynamic experiment with a constant heating rate whereas the hot-stage Raman spectroscopic experiment occurs as a staged experiment. Hot stage Raman spectroscopy supports the changes in molecular structure of liebigite during the proposed stages of thermal decomposition as observed in the TG-MS experiment.  相似文献   

7.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

8.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

9.
Potassium Hydrogensulfate Dihydrogensulfate, K(HSO4)(H2SO4) – Synthesis and Crystal Structure Single crystals with the composition KH3(SO4)2 have been synthesized from the system Potassium sulfate/sulfuric acid. The hitherto crystallographically not investigated compound crystallizes in the monoclinic space group P21/c (14) with the unit cell parameters a = 7.654(3), b = 11.473(5) and c = 8.643(3) Å, β = 112.43(3)°, V = 701.6 Å3, Z = 4 and Dx = 2.22 g · cm?3. The structure contains two types of tetrahedra, SO3(OH) and SO2(OH)2. These tetrahedra form tetramers via hydrogen bonds consisting of both, two SO3(OH) and two SO2(OH)2 tetrahedra. The tetramers are linked to each other via hydrogen bonds. Potassium is coordinated by 9 oxygen atoms which belong to both kinds of tetrahedra. These potassium oxygen polyhedra are connected by common faces forming chains running parallel z.  相似文献   

10.
Low Temperature Investigation of Hydrogen Bridge Bonds in Lithium Tetrahydroxoborate by Raman Spectroscopy, X‐Ray and Neutron Diffraction (Li11B(OD)4) Low temperature Raman spectroscopic measurements on isotopically diluted Li11B(OH)4 with 8 % D and Li11B(OD)4 with 8 % H reveal four crystallographically different hydrogen bridge bonds. With decreasing temperatures beginning at ~50 K measured down to ~10 K the stretching modes of the hydroxide ions shift to higher wave numbers. For the strongest bond O–D···O the frequency shift is 16 cm?1and for the weakest 7 cm?1. For O–H···O the maximum in the frequency shift is 22 cm?1. X‐ray single crystal (LiB(OH)4) and neutron powder diffraction (Li11B(OD)4) data result in bond lengths for the four hydroxide ions in the range of 0.943 (3) Å ≤ d(O–D) ≤ 0.974 (3) Å. The value of the effect of inversion of the stretching mode frequencies seems to correlate with the strength of the hydrogen bridge bonds and is found to be different for the two isotopes H and D in this compound.  相似文献   

11.
The IR absorption spectra of α,ω-alkanediols with different chain lengths, HO(CH2)22OH and HO(CH2)44OH, in the spectral range of 400–5000 cm?1 are analyzed. The assignment of numerous absorption bands to vibration modes in short methylene sequences and terminal hydroxyl groups is suggested. The splitting of IR absorption bands into doublets at 720–730 cm?1 (rocking vibrations of CH2 groups) and 1463–1473 cm?1 (bending vibrations of CH2 groups) testifies that the crystal unit subcells in the lamellae of alkanediols are orthorhombic with parameters typical of normal hydrocarbons. The specific features of absorption bands due to O-H stretching and C-O-H bending vibrations have been analyzed. These bands appear during formation of lengthy associates from hydrogen bonds formed by hydroxyl groups on the surface of elementary lamellae. A sharp increase in the intensity of the absorption bands in progression of C-C stretching and CH2 wagging vibrations due to the anharmonic Fermi resonance with the stretching vibrations of C-O groups in the terminal hydroxyl groups has been detected.  相似文献   

12.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

13.
When basic aprotic solvents are added to methanol they become hydrogen bonded, and there is a consequent growth in non-bonded lone-pairs, (LP)free. Although corresponding non-bonded OH groups, (OH)free, have been detected for alcohols and for water, using overtone infrared spectroscopy, no different spectroscopic evidence for (LP)free groups has previously been reported. We have found that unique OH stretching bands develop when strongly basic solvents such as dimethylsulphoxide are added to methanol. Band maxima assigned to (LP)free groups occur at 3440 cm?1 in the fundamental and 6790 cm?1 in the overtone region. These are at considerably higher frequencies than those for bulk methanol (3340 cm?1 and 6600 cm?1) showing that the hydrogen bond is weakened in this unit, as expected. Proton resonance shifts for the OH protons of methanol on adding basic aprotic cosolvents are reported, and explained in terms of these results.  相似文献   

14.
The infrared and Raman spectra of sodium α-, β- and γ-hydroxybutyrates and their deuterated analogues are examined in the 4000-100 cm−1 range and an assignment of the fundamental vibrations is given. Based on the localization of the asymmetric stretching vibrations νasOH and the out-of-plane vibration γOH, inter- and/or intramolecularly hydrogen-bonded forms are proposed: the low frequencies of νasOH (<3200 cm−1) and high frequencies of γOH (≈800 cm−1) argue in favour of the existence of intramolecular hydrogen bonding. Sodium α-hydroxybutyrate exhibits as a chelate ring with an intramolecular hydrogen bond between hydroxyl and carboxyl groups, whereas sodium, β-hydroxybutyrate has the two association forms with inter- and intramolecular hydrogen bonds. Sodium γ-hydroxybutyrate exists as a hydrogen-bonded polymer, with an intermolecular hydrogen bond between the hydroxyl groups and between the hydroxyl and carbonyl groups. At a crystallization temperature above 50°C, only the α- salt showed a structural change indicating the existence of intra- and intermolecular hydrogen bonds. This result is confirmed by differential scanning analysis.  相似文献   

15.
A New Lithium Hydrogen Sulfate, Li2(HSO4)2(H2SO4) – Synthesis and Crystal Structure The title compound crystallizes in good shaped single crystals from the system lithium sulfate/sulfuric acid in the orthorhombic space group Pccn, unit cell parameters a = 17.645(4), b = 5.378(1), c = 10.667(3) Å. V = 1 012.2 Å3, Z = 4, Dx = 2.009 g cm?3. There are two types of SO4 tetrahedra, SO3(OH) and SO2(OH)2, connected via hydrogen bonds forming layers parallel to the xy-plane. The layers are linked by Li atoms, which are tetrahedral coordinated by O atoms coming two by two from neighboured layers.  相似文献   

16.
Thermolysis of poly(diphenylene sulfophthalide) (PDSP) in the temperature range from 100 to 500 °C was studied by IR and UV-Vis spectroscopy and thermogravimetric analysis. A series of absorption bands in the IR spectrum of PDSP were assigned on the basis of the theoretical calculations of the IR spectrum of diphenyl sulfophthalide used as a model compound, in particular, νas(S=O) = 1352 cm?1, νs(S=O) = 1196 cm?1, ν(C-O) ~ 920 cm?1, ν(S-O) = 824 cm?1, and δ(SO2) = 576 cm?1. The sulfophthalide cycle (SPC) in PDSP decomposes at the thermolysis temperatures in a range of 260–400 °C. An analysis of the IR spectra of the thermolyzate and the quantum chemical calculations of the IR spectra of the model compounds confirmed the predominant formation of fluorenyl structures in the thermolyzed polymer. The changes in the UV-Vis spectra observed upon the thermolysis of thin films of PDSP (the hypsochromic shift of the long-wavelength absorption band from 271 to 263 nm and the appearance a shoulder at ~310 nm) and the results of TD-DFT calculations of the UV-Vis spectra of the model compounds are consistent with the hypothesis about the formation of fluorenyl structures. The general scheme of PDSP thermolysis at 260–400 °C was proposed in which the major process is the formation of fluorenyl fragments in macromolecules of the polymer due to the intramolecular ring closure in biradicals formed by the SPC cleavage.  相似文献   

17.
Transient FT-IR spectra of fac-Re(dmb)(CO)3(Et) after laser excitation (355 nm) were investigated in THF under Ar and CO2 atmospheres. The CO stretching bands of Re(dmb)(CO)3(THF) grow (2008 and 1897 cm?1) and those of Re(dmb)(CO)3(Et) bleach (1987 and 1875 cm?1) at times <1 μs, consistent with clean cleavage of the Re-Et bond. Under a CO2 atmosphere, the long-lived radical (τ>100 ms) converts slowly to the formato complex Re(dmb)(CO)3(OC(O)H) (2020, 1916, 1873 and 1630 cm?1). When the solvent is slightly wet, the bicarbonato complex, Re(dmb)(CO)3(OC(O)OH), is also observed after photolysis under CO2.  相似文献   

18.
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations of hydrogen bonded (OH) ions and Cu2+-(O,OH) units. The approximate range of O–H?O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.  相似文献   

19.
Abstract

The infrared absorption spectrum of monomeric 2-methylmercaptoethanol in dilute CC14, solution exhibits four overlapped bands in the fundamental OH stretching region. The individual band components were resolved using digital computing techniques [1], and the relative band intensities are temperature dependent. The “free” OH bands at 3634 and 3623 cm correspond to gauche and trans orientations about the C-O bond, respectively, by analogy with similar band components in the infrared spectrum of ethanol in dilute CC14, solution. The OH bands at 3539 and 3446 cm?1 are assigned to gGt and gGg1 conformers, respectively, each involving an intramolecular OH···S hydrogen bond (conformer notation refers to the orientation about the C-O, C-C and C-S(CH3) bonds, respectively). A similar interpretation of the matrix isolated infrared spectra of ethylene glycol, involving two conformers with intramolecular OH···O hydrogen bonds and differing principally in the orientation of the proton-acceptor OH group, has been presented recently [2]. The microwave spectrum of 2-mercaptoethanol in the vapour phase arises from an all-gauche conformation with an intramolecular OH···S hydrogen bond [3].  相似文献   

20.
The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, νs(SO2), of the linked SO2 molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to νs(SO2) at ca. 1080 cm?1 and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm?1 are observed. The variation of the relative intensities of the bands assigned to νs(SO2) present in the Ni(II)·SO2 complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号