首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

2.
Given a positive and unitarily invariant Lagrangian ${\mathcal{L}}$ defined in the algebra of matrices, and a fixed time interval ${[0,t_0]\subset\mathbb R}$ , we study the action defined in the Lie group of ${n\times n}$ unitary matrices ${\mathcal{U}(n)}$ by $$\mathcal{S}(\alpha)=\int_0^{t_0} \mathcal{L}(\dot\alpha(t))\,dt, $$ where ${\alpha:[0,t_0]\to\mathcal{U}(n)}$ is a rectifiable curve. We prove that the one-parameter subgroups of ${\mathcal{U}(n)}$ are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if ${\mathcal{L}}$ is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in ${\mathcal{U}(n)}$ as well as angular metrics in the Grassmann manifold.  相似文献   

3.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

4.
The inclusion relations for the spaces $ \mathcal{H}\mathcal{K} $ (I), L(I), $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I), and L 2(I) are found. On unbounded intervals, functions in $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I) need not be Lebesgue integrable.  相似文献   

5.
6.
We study the entropy flux in the stationary state of a finite one-dimensional sample ${\mathcal{S}}$ connected at its left and right ends to two infinitely extended reservoirs ${\mathcal{R}_{l/r}}$ at distinct (inverse) temperatures ${\beta_{l/r}}$ and chemical potentials ${\mu_{l/r}}$ . The sample is a free lattice Fermi gas confined to a box [0, L] with energy operator ${h_{\mathcal{S}, L}= - \Delta + v}$ . The Landauer-Büttiker formula expresses the steady state entropy flux in the coupled system ${\mathcal{R}_l + \mathcal{S} + \mathcal{R}_r}$ in terms of scattering data. We study the behaviour of this steady state entropy flux in the limit ${L \to \infty}$ and relate persistence of transport to norm bounds on the transfer matrices of the limiting half-line Schrödinger operator ${h_\mathcal{S}}$ .  相似文献   

7.
In (Rie?anová and Zajac in Rep. Math. Phys. 70(2):283–290, 2012) it was shown that an effect algebra E with an ordering set $\mathcal{M}$ of states can by embedded into a Hilbert space effect algebra $\mathcal{E}(l_{2}(\mathcal{M}))$ . We consider the problem when its effect algebraic MacNeille completion $\hat{E}$ can be also embedded into the same Hilbert space effect algebra $\mathcal {E}(l_{2}(\mathcal{M}))$ . That is when the ordering set $\mathcal{M}$ of states on E can be extended to an ordering set of states on $\hat{E}$ . We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras.  相似文献   

8.
We prove that Haag duality holds for cones in the toric code model. That is, for a cone ??, the algebra ${\mathcal{R}_{\Lambda}}$ of observables localized in ?? and the algebra ${\mathcal{R}_{\Lambda^c}}$ of observables localized in the complement ?? c generate each other??s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if ${\Lambda_1 \subset \Lambda_2}$ are two cones whose boundaries are well separated, there is a Type I factor ${\mathcal{N}}$ such that ${\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}$ . We demonstrate this by explicitly constructing ${\mathcal{N}}$ .  相似文献   

9.
Assume ${\mathcal{A}}$ is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel’s deformation ${\mathcal{A}_J}$ of ${\mathcal{A}}$ . We construct an explicit isomorphism between the smooth crossed products ${V\ltimes\mathcal{A}_J}$ and ${V\ltimes\mathcal{A}}$ . When combined with the Elliott–Natsume–Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel’s and Kasprzak’s approaches to deformation.  相似文献   

10.
Given a conformal QFT local net of von Neumann algebras ${\mathcal {B}_2}$ on the two-dimensional Minkowski spacetime with irreducible subnet ${\mathcal {A} \otimes \mathcal {A}}$ , where ${\mathcal {A}}$ is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to ${\mathcal {B}_2}$ : we provide a procedure to construct a Boundary CFT net ${\mathcal {B}}$ of von Neumann algebras on the half-plane x >  0, associated with ${\mathcal {A}}$ , and locally isomorphic to ${\mathcal {B}_2}$ . All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of ${\mathcal {B}_2}$ to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S 1.  相似文献   

11.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

12.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

13.
We prove a regularity result in weighted Sobolev (or Babu?ka?CKondratiev) spaces for the eigenfunctions of certain Schr?dinger-type operators. Our results apply, in particular, to a non-relativistic Schr?dinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let ${\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}$ be the weighted Sobolev space obtained by blowing up the set of singular points of the potential ${V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}$ , ${x \in \mathbb{R}^{3N}}$ , ${b_j, c_{ij} \in \mathbb{R}}$ . If ${u \in L^2(\mathbb{R}^{3N})}$ satisfies ${(-\Delta + V) u = \lambda u}$ in distribution sense, then ${u \in \mathcal{K}_{a}^{m}}$ for all ${m \in \mathbb{Z}_+}$ and all a ?? 0. Our result extends to the case when b j and c ij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a?<?3/2.  相似文献   

14.
We study charmless pure annihilation type radiative B decays within the QCD factorization approach. After adding the vertex corrections to the naive factorization approach, we find that the branching ratios of $\overline{B}^{0}_{d}\to\phi\gamma$ , $\overline{B}^{0}_{s}\to\rho^{0}\gamma$ and $\overline{B}^{0}_{s}\to\omega\gamma$ within the standard model are at the order of $\mathcal{O}(10^{-12})$ , $\mathcal{O}(10^{-10})$ and $\mathcal{O}(10^{-11})$ , respectively. The smallness of these decays in the standard model makes them sensitive probes of flavor physics beyond the standard model. To explore their physics potential, we have estimated the contribution of Z′ boson in the decays. Within the allowed parameter space, the branching ratios of these decay modes can be enhanced remarkably in the non-universal Z′ model: The branching ratios can reach to $\mathcal{O}(10^{-8})$ for $\overline{B}_{s}^{0}\to \rho^{0}(\omega)\gamma$ and $\mathcal{O}(10^{-10})$ for the $\overline{B}_{d}^{0}\to \phi \gamma$ , which are large enough for LHC-b and/or Super B-factories to detect those channels in near future. Moreover, we also predict large CP asymmetries in suitable parameter space. The observation of these modes could in turn help us to constrain the Z′ mass within the model.  相似文献   

15.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

16.
In this article, we study the vertexes $ \Xi_{Q}^{*}$ Q V and $ \Sigma_{Q}^{*}$ $ \Sigma_{Q}^{}$ V with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate $ \phi$ (1020) , $ \rho$ (770) and $ \omega$ (782) , and calculate the radiative decays $ \Xi_{Q}^{*}$ $ \rightarrow$ Q $ \gamma$ and $ \Sigma_{Q}^{*}$ $ \rightarrow$ $ \Sigma_{Q}^{}$ $ \gamma$ .  相似文献   

17.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

18.
We introduce a new type of algebra, the Courant–Dorfman algebra. These are to Courant algebroids what Lie–Rinehart algebras are to Lie algebroids, or Poisson algebras to Poisson manifolds. We work with arbitrary rings and modules, without any regularity, finiteness or non-degeneracy assumptions. To each Courant–Dorfman algebra ${(\mathcal{R}, \mathcal{E})}$ we associate a differential graded algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ in a functorial way by means of explicit formulas. We describe two canonical filtrations on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ , and derive an analogue of the Cartan relations for derivations of ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; we classify central extensions of ${\mathcal{E}}$ in terms of ${H^2(\mathcal{E}, \mathcal{R})}$ and study the canonical cocycle ${\Theta \in \mathcal{C}^3(\mathcal{E}, \mathcal{R})}$ whose class ${[\Theta]}$ obstructs re-scalings of the Courant–Dorfman structure. In the nondegenerate case, we also explicitly describe the Poisson bracket on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; for Courant–Dorfman algebras associated to Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ is isomorphic to the one constructed in Roytenberg (On the structure of graded symplectic supermanifolds and Courant algebroids. American Mathematical Society, Providence, 2002) using graded manifolds.  相似文献   

19.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号