首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scheme for controlled quantum state swapping is presented using maximally entangled five-qubit state,i.e.,Alice wants to transmit an entangled state of particle a to Bob and at the same time Bob wants to transmit an entangled state of particle b to Alice via the control of the supervisor Charlie.The operations used in this swapping process including C-not operation and a series of single-qubit measurements performed by Alice,Bob,and Charlie.  相似文献   

2.
A scheme for controlled quantum state swapping is presented using maximally entangled five-qubit state, i.e., Alice wants to transmit an entangled state of particle a to Bob and at the same time Bob wants to transmit an entangled state of particle b to Alice via the control of the supervisor Charlie. The operations used in this swapping process including C-not operation and a series of single-qubit measurements performed by Alice, Bob, and Charlie.  相似文献   

3.
In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.  相似文献   

4.

In this paper, an improved controlled bidirectional quantum teleportation protocol of the special three-qubit state is proposed. In a little bit more detail, under the control of the third supervisor Charlie, Alice wants to send one special three-qubit entangled state to Bob, and at the meantime, Bob also wants to transmit another special three-qubit entangled state to Alice. In other words, both Alice and Bob can be the sender and receiver simultaneously. To achieve this aim, a specific eleven-qubit entangled state is shared among Alice, Bob and Charlie in advance acting as the quantum channel. Then, Alice and Bob first implement the GHZ-state measurement and Bell-state measurement respectively, and following Charlie’s single-qubit measurement. Finally, upon the foregoing measurement results, Alice and Bob can respectively implement the specific unitary operators on their local particles to recover the initial state transmitted by the other.

  相似文献   

5.
We demonstrate that a seven-qubit entangled state can be used to realize the deterministic tripartite controlled teleportation by performing Bell-state measurements, where Alice wants to teleport an arbitrary single-qubit state of qubit a to Bob, Charlie wants to teleport an arbitrary single-qubit state of qubit b to David and at the same time Edison wants to teleport an arbitrary single-qubit state of qubit c to Ford via the control of the supervisor Tom.  相似文献   

6.
A new application of six-qubit entangled state introduced by Chen et al. (Phys. Rev. A 74, 032324, 2006) is studied for the bidirectional quantum controlled teleportation. In our scheme, a six-qubit entangled state is shared by Alice, Bob and Charlie, Alice and Bob can transmit simultaneously an arbitrary single-qubit state to each other under the control of the supervisor Charlie.  相似文献   

7.
We propose a new protocol of asymmetric bidirectional controlled teleportation by using a seven-qubit cluster state as the quantum channel. That is to say Alice wants to transmit an arbitrary single-qubit state to Bob and Bob wants to transmit an arbitrary two qubit state to Alice via the control of the supervisor Charlie. One only need perform the Bell-state measurements and single-qubit measurement.  相似文献   

8.

A novel theoretical scheme is proposed to implement quantum cyclic controlled teleportation (QCYCT) of three unknown states by utilizing a seven-qubit entangled state as the quantum channel, where Alice can transmit an unknown m-qubit state to Bob, Bob can transmit an unknown n-qubit state to Candy and Candy can transmit an unknown t-qubit state to Alice under the control of the supervisor David. Only controlled-not (CNOT) operations, Bell-state measurements, a single-qubit measurement and appropriate unitary operations are needed in this scheme, which can be realized in experiment easily. The desired state of each communicator can be recovered deterministically by using auxiliary particles. The direction of the cyclic controlled teleportation can also be altered throughout changing the selection of the particle pairs to be measured of each communicator. Compared with the previous QCYCT schemes, the proposed scheme possesses higher intrinsic efficiency in most cases and can transfer as many qubits as the communicators desire.

  相似文献   

9.

In this paper, we present a scheme of bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Alice transmits an unknown three-qubit entangled state to Bob, and Bob transmit an unknown three-qubit entangled state to Alice via the control of the supervisor Charlie. In order to facilitate the implementation in the experimental environment, the preparation method of quantum channel is given. This scheme is based on that three-qubit entangled state are transformed into two-qubit entangled state and single qubit superposition state by using Toffoli Gate and Controlled-NOT operation, receivers can by introducing the appropriate unitary transformation and auxiliary particles to reconstruct the initial state. Finally, this paper is implemented a scheme of bidirectional quantum controlled teleportation of more than two qubits via the control of the supervisor Charlie.

  相似文献   

10.
A bidirectional quantum controlled teleportation scheme using a seven-qubit maximally entangled state as quantum channel is proposed. This means that Alice can transmit an arbitrary single qubit state of qubit a to Bob and Bob can transmit an arbitrary single qubit state of qubit b to Alice via the control of the supervisor Charlie.  相似文献   

11.
We propose a scheme for bidirectional controlled quantum teleportation by using a genuine five-qubit entangled state. In our scheme, Alice may transmit an arbitrary single qubit state of qubit A to Bob and at the same time, Bob may transmit an arbitrary single qubit state of qubit B to Alice via the control of the supervisor Charlie.  相似文献   

12.
We propose a scheme for bidirectional quantum teleportation by using a five-qubit cluster state. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice.  相似文献   

13.
We propose a scheme for asymmetric bidirectional controlled teleportation by using a six-qubit cluster state as quantum channel. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice under the control of the supervisor Charlie.  相似文献   

14.
We present a novel scheme for asymmetric controlled bidirectional remote state preparation (ACBRSP) with complex coefficients via a ten-qubit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to remotely prepare a single-qubit state at Bob’s site, at the same time, Bob wishes to help Alice remotely prepares an arbitrary two-qubit entangled state. It is shown that, only if the two senders and the controller collaborate with each other, the ACBRSP can be completed successfully. We demonstrate that the total success probability of the ACBRSP in this scheme can reach 1, that is, the scheme is deterministic.  相似文献   

15.
We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.  相似文献   

16.
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.  相似文献   

17.
We suggest a method for transferring an unknown quantum state. In this method the sender Alice first applies a controlled-not operation on the particle in the unknown quantum state and an ancillary particle which she wants to send to the receiver Bob. Then she sends the ancillary particle to Bob. When Alice is informed by Bob that the ancillary particle is received, she performs a local measurement on her particle and sends Bob the outcome of the local measurement via a classical channel. Depending on the outcome Bob can restore the unknown quantum state, which Alice destroyed, on the ancillary particle successfully. As an application of this method we propose a quantum secure direct communication protocol. By introducing the decoy qubits the security of the scheme is guaranteed.  相似文献   

18.

We present a protocol for controlled cyclic remote preparation of an arbitrary single-qudit state via a seven-qudit cluster state. In the protocol, Alice can help the remote agent Bob prepare an arbitrary single-qudit state, Bob can help the agent Charlie prepare an arbitrary single-qudit state and at the same time Charlie can help Alice prepare an arbitrary single-qudit state under the controller David’s control. Alice, Bob and Charlie first perform positive operator-valued measurement (POVM) on their entangled particles according to the information of the prepared state, then perform generalized X-basis measurement. The controller performs generalized X-basis measurement on his entangled particle. The arbitrary single-qudit states can be cyclic remote prepared under the controller’s control. The protocol is more convenient in application since it only requires single-particle measurement and single-particle unitary operations for controlled cyclic remote preparation of the single-qudit states.

  相似文献   

19.
By swapping the entanglement of χ-type state, we propose a quantum key distribution protocol, in which only Alice needs to prepare χ-type states and transmit a particle sequence. Both Alice and Bob need to perform χ-type state measurements.  相似文献   

20.
In this paper, quantum teleportatlon of one-to-many using (n +1)-particle entanglement is presented. If the sender (Alice) wants to transmit an unknown quantum state to a distant receiver (Bob), similar to the previous schemes, Alice performs Bell-state measurement on particles belonging to herself and informs the receiver the results through the classical channel. After that, it needs to perform the Hadamard operation on the other (n - 1) particles and measure them as well. With the aid of the measurement results, Bob can operate a corresponding unitary transformation on his particle to reconstruct the original state. Of course, the reconstruction may realize at either location of n, but it cannot realize at all locations at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号