首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that coherent processes of elastic scattering of resonant radiation form a “buffer” electromagnetic field near the boundary of excited media. This part of radiation is not governed by the standard refractive index, but precisely this part of radiation forms the beams reflected and refracted by the excited medium. The presence of the “buffer” field causes the suppression of stimulated emission near the boundary and leads to the appearance of a frequency angular broadening of the beam transmitted through a thin film of excited atoms at an oblique angle.  相似文献   

2.
The role of quantum interference in the formation of the resonance scattering spectra of Mössbauer photons is studied. A resonant rf field mixing the spin levels of the excited state of a nucleus is considered to be the mechanism ensuring the conditions for quantum interference. A considerable intensity redistribution of the elastic and Raman scattering channels is shown to occur as a result of quantum interference.  相似文献   

3.
The method of matrix Green’s functions in the classical theory of electromagnetic waves is stated. This method allows to obtain a closed equation system in the presence of the random media for the calculation both coherent, and incoherent (fluctuating) components of radiation. The density and heterogeneity of scattering media can be arbitrary. The coherent channel is calculated independently. The fluctuating radiation distribution in the medium is developed initially by an interference pattern generated by the coherent channel. The limitations of the processes speed are absent. The theory embraces such phenomena as the boson peak, flickering noise, memory effect, backscattering processes and also conventional radiative transfer equation and Fresnel’s formulae.  相似文献   

4.
According to quantum electrodynamics, the cross section for resonant scattering of radiation on an aggregate of excited atoms can be written as a sum of positive definite terms. This type of structure is not consistent with the Fresnel formulas for the reflection coefficient of radiation from thermally excited media. The difference shows up on a macroscopic level and indicates that semiclassical radiation theory cannot be used. A study of the correlation between elastic scattering and stimulated emission processes clarifies the reason for the discrepancies. The resulting singularities require summing of Feynman diagrams which appear beginning in the sixth order of perturbation theory. A lower bound estimate for the reflection coefficient from a plane layer is given, including processes which violate the statistics of radiation. The contribution of stimulated emission processes caused by the initially scattered photon are examined specifically. An experiment is proposed which would settle the choice of theories. Zh. éksp. Teor. Fiz. 113, 521–538 (February 1998)  相似文献   

5.
Transfer reactions 56Fe(12C, xN) have been investigated. Angular distributions of particles following elastic scattering, one neutron and one proton transfer reaction channels leading to low lying states in respective residual nuclei have been measured. These are analysed using the coupled reaction channel (CRC) formalism. Starting with a double folded real potential, the elastic scattering angular distribution is calculated using the computer code FRESCO. Inclusion of couplings to first excited states in both the target and the projectile already tends to describe the experimental elastic scattering distribution. Additional coupling of one neutron transfer reaction to first five excited states in 55Fe and one proton transfer reaction to first three low lying states in 57Co improves fit to the elastic scattering angular distribution. Further refinement in fit is brought about by addition of a weak imaginary potential to the complex potential calculated by ERESCO to simulate the absorption effects due to those channels whose coupling is not included explicitly. Such a potential describes the experimental angular distributions for elastic, one neutron and one proton transfer channels correctly in shape and magnitude without any arbitrary normalisation.  相似文献   

6.
《Physics Reports》2005,409(5):261-359
The features of electromagnetic processes are considered which connected with finite size of space region in which final particles (photon, electron–positron pair) are formed. The longitudinal dimension of the region is known as the formation length. If some external agent is acting on an electron while traveling this distance the emission process can be disrupted. There are different agents: multiple scattering of projectile, polarization of a medium, action of external fields, etc. The theory of radiation under influence of the multiple scattering, the Landau–Pomeranchuk–Migdal (LPM) effect, is presented. The probability of radiation is calculated with an accuracy up to “next to leading logarithm” and with the Coulomb corrections taken into account. The integral characteristics of bremsstrahlung are given, it is shown that the effective radiation length increases due to the LPM effect at high energy. The LPM effect for pair creation is also presented. The multiple scattering influences also on radiative corrections in a medium (and an external field too) including the anomalous magnetic moment of an electron and the polarization tensor as well as coherent scattering of a photon in a Coulomb field. The polarization of a medium alters the radiation probability in soft part of spectrum. Specific features of radiation from a target of finite thickness include: the boundary photon emission, interference effects for thin target, multi-photon radiation. The theory predictions are compared with experimental data obtained at SLAC and CERN SPS. For electron–positron colliding beams following items are discussed: the separation of coherent and incoherent mechanisms of radiation, the beam-size effect in bremsstrahlung, coherent radiation and mechanisms of electron–positron creation.  相似文献   

7.
The propagation of gamma radiation through a resonant medium in the case of interfering quantum transition paths is considered. The interference is made possible by a field that mixes the crossing spin levels in the excited nuclear state and splits two degenerate transitions into two V-type transitions. If forward resonant scattering allows for a change of the gamma radiation polarization, then the two V-transitions are coupled, which results in destructive interference. In this case the absorption is reduced in a particular frequency domain. PACS 42.50.Gy; 33.45.+x  相似文献   

8.
Scattering of a resonance electromagnetic field from excited atoms cannot be described by the semiclassical theory of radiation operating with nonquantized electromagnetic fields. Field quantization effects are manifested in this case on the macroscopic level and lead to evolution of statistical properties of radiation in the course of scattering. It is found that a combined process coupling elastic scattering from an atom and induced emission from the same atom, which cannot be studied by the methods of the standard perturbation theory, plays a significant role in this effect. The process of combined scattering in extended media exhibits coherent properties that cannot be described by the standard refractive index.  相似文献   

9.
10.
多纵模高光谱分辨率激光雷达是一种新型的高光谱分辨率激光雷达.本文在研究典型高功率Nd:YAG脉冲激光器的多纵模模式及其在大气中传输的气溶胶米散射和瑞利散射光谱的基础上,设计紫外域多纵模高光谱分辨率激光雷达系统,采用窄带干涉滤光片滤除太阳背景光的影响,设计可调谐马赫-曾德尔干涉仪,分离提取多纵模激光回波中的气溶胶米散射和瑞利散射光谱,并利用马赫-曾德尔干涉仪双通道输出的互补性原理,精确反演气溶胶光学参量.系统仿真结果表明,所设计的紫外域多纵模高光谱分辨率激光雷达能够实现10 km高度内的气溶胶光学参量精细探测.  相似文献   

11.
The existence of a new sort of optical size resonances formed due to the self-consistent coherent interaction of atoms when one of them is excited by a field of continuous optical radiation is proved. The processes of energy transfer from the thus-excited atom to large (of the order of several wavelengths) interatomic distances are considered. It is shown that these processes can be observed in the wave zone upon the interference of the optical fields formed by the oscillating dipole moments of the interacting atoms.  相似文献   

12.
We investigate collision of two atoms in an external magnetic field and in the field of laser radiation with formation of Fano-Feshbach resonances. At one-photon resonance of laser radiation with two discrete vibrational states of molecule the dressed states are formed (Autler-Townes effect) which form Fano-Feshbach resonances in interaction with the external magnetic field. In addition, the lower molecular vibrational state is coupled with the continuum of the elastic channel via also LICS (laser-induced continuum structure) forming laser-induced resonance. We obtain cross-sections of elastic and inelastic resonant scattering and expression for the scattering length depending on the external magnetic and laser radiation fields.  相似文献   

13.
This paper investigates the reconstruction of elastic Green's function from the cross-correlation of waves excited by random noise in the context of scattering theory. Using a general operator equation-the resolvent formula-Green's function reconstruction is established when the noise sources satisfy an equipartition condition. In an inhomogeneous medium, the operator formalism leads to generalized forms of optical theorem involving the off-shell T-matrix of elastic waves, which describes scattering in the near-field. The role of temporal absorption in the formulation of the theorem is discussed. Previously established symmetry and reciprocity relations involving the on-shell T-matrix are recovered in the usual far-field and infinitesimal absorption limits. The theory is applied to a point scattering model for elastic waves. The T-matrix of the point scatterer incorporating all recurrent scattering loops is obtained by a regularization procedure. The physical significance of the point scatterer is discussed. In particular this model satisfies the off-shell version of the generalized optical theorem. The link between equipartition and Green's function reconstruction in a scattering medium is discussed.  相似文献   

14.
15.
Analysis of the spatial distribution of the color centers formed in wide-gap LiF and MgF2 crystals in a laser beam channel has shown that these centers are formed in numerous longitudinal filaments into which a laser beam splits when propagating in a medium. The luminescence of the produced color centers is photoluminescence, which is excited by the supercontinuum radiation in the filaments.  相似文献   

16.
A coherently excited nuclear state is carried with a rotating sample so that its radiative decay is redirected by the rotation angle that has developed during its lifetime. As a result, the time spectrum of the nuclear decay is mapped to an angular scale. This effect has been observed in nuclear resonant scattering of synchrotron radiation from a rotating 57Fe metal foil. Applications with respect to elastic and inelastic nuclear resonant scattering are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The projectile-nucleon scattering amplitudes used as input into multiple scattering theories of projectile-nucleus scattering naturally include the effects of coupling to inelastic (i.e., production) channels. We employ a multichannel separable potential to describe the projectile-nucleon interaction and show that within the fixed nucleon framework we can obtain the nuclear elastic scattering amplitude. This includes terms outside the conventional formalisms, corresponding to intermediate propagation in the inelastic channels both above and below inelastic threshold. We refer to this as inelastic shadowing. In a two-channel approximation, we show that knowledge of the projectile-nucleon elastic scattering phase shifts plus specification of the inelastic threshold energy are sufficient to determine the off-shell coupled-channel transition matrix, implying that the nuclear amplitude can be calculated within this model without any detailed information about the inelastic channels. We study this solution quantitatively for some model problems and for pion scattering, with the general result that inelastic shadowing can be significant whenever the elementary interaction has important channel coupling. For pion scattering in the energy regime characterized by strongly absorptive resonances, we find, for example, that the effect of inelastic shadowing is much more important than that due to two-nucleon correlations.  相似文献   

18.
19.
A new type of weak localization of electrons emerging during electron emission is considered. It is manifested in singularities of the angular spectra of particles reflected inelastically from a solid and causing Auger ionization of the atoms. The orientational dependences in this case appear as a result of interference of two types of processes. In one case, an electron from the primary beam penetrates the solid, undergoes inelastic scattering, ionizes an atom, and is then scattered elastically through a large angle, after which it leaves the solid. In the other case, elastic scattering of an electron precedes its inelastic scattering due to the Auger ionization of an atom. The azimuthal angular dependences of currents created by inelastically reflected electrons contain information on new processes of weak localization of particles.  相似文献   

20.
The calculated angular distributions for proton elastic and inelastic scattering can be greatly improved by using an imaginary potential which depends upon the nuclear state. We demonstrate that this is just the effect expected from the coupling of deuteron channels and the phenomenon therefore provides a signature for multistep processes which is not dependent on detailed calculations. The obvious application to the usual DWBA calculations of inelastic proton scattering is mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号