首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Surface structures of semifluorinated alkanes F(CF(2))(n)(CH(2))(m)H (referred to as FnHm) spread on the air/water interface are investigated theoretically. The study is focused on the disklike surface micelles that were recently identified by AFM and scattering techniques at sufficiently high surface concentrations. We show that (1) the micelles emerge as a result of liquid/liquid (rather than liquid/gas) phase separation in the Langmuir layer; (2) the micelles are islands of the higher-density phase with roughly vertical orientation of FnHm molecules (F-parts extend toward air, H-parts toward water) and the matrix is the lower density-phase where the FnHm diblocks are nearly parallel to the water surface; (3) the micelles and the hexagonal structure they form are stabilized by the electrostatic interactions which are mainly due to the vertical dipole moments of the CF(2)- CH(2) bonds in the vertical phase; and (4) the electrostatic repulsive interactions can serve to suppress the micelle size polydispersity.  相似文献   

2.
The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.  相似文献   

3.
Monte Carlo simulations with a coarse-grained model were performed to study the microstructure of a semifluoroalkane C20 diblock oligomer [F(CF(2))(10)(CH(2))(10)H]. The coarse-grained model adopted is based on previously reported united-atom force fields for alkanes and perfluoroalkanes and was first validated by simulating the phase behavior of a mixture of hexane and perfluorohexane. These preliminary simulations established the need of a significant correction factor in the Berthelot mixing rule between alkane and perfluoroalkane groups. Using such a force field, the semifluorinated C20 oligomer liquid was simulated using efficient Monte Carlo moves to sample different molecular arrangements and box dimensions so as to allow different layering structures to form. In qualitative agreement with experimental observations, a smectic-to-isotropic phase transition occurs as temperature is increased but the transition point and the structure of the smectic phase depend on the stiffness of the torsional potential and the model of van der Waals interactions adopted. We identify two smectic phases LC1' and LC2', whose structures do not agree with those that have been postulated before to explain x-ray diffraction data, namely, LC1 and LC2. LC1' has a layer spacing similar to LC1 but the antiparallel packing is not observed with individual chains but with groups of chains producing a checkerboard pattern. LC2' has fully microsegregated blocks such as LC2 but the alkyl tails are not fully stretched or interdigitated. Despite these inconsistencies, and considering that reported experimental data also reveal the presence of mixed phases, the simulated structures suggest other plausible ways how the semifluorinated chains could pack and microsegregate to best negotiate energetic and entropic constraints.  相似文献   

4.
A series of diblock copolymers prepared from styrenic monomers was synthesized using atom transfer radical polymerization. One block was derived from styrene, whereas the second block was prepared from a styrene modified with an amphiphilic PEGylated‐fluoroalkyl side chain. The surface properties of the resulting polymer films were carefully characterized using dynamic contact angle, XPS, and NEXAFS measurements. The polymer morphology was investigated using atomic force microscope and GISAXS studies. The block copolymers possess surfaces dominated by the fluorinated unit in the dry state and a distinct phase separated microstructure in the thin film. The microstructure of these polymers is strongly influenced by the thin film structure in which it is investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 267–284, 2009  相似文献   

5.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

6.
The interface between bulk water and bulk hexane solutions of n-alkanols (H(CH(2))(m)OH, where m=20, 22, 24, or 30) is studied with x-ray reflectivity, x-ray off-specular diffuse scattering, and interfacial tension measurements. The alkanols adsorb to the interface to form a monolayer. The highest density, lowest temperature monolayers contain alkanol molecules with progressive disordering of the chain from the -CH(2)OH to the -CH(3) group. In the terminal half of the chain that includes the -CH(3) group the chain density is similar to that observed in bulk liquid alkanes just above their freezing temperature. The density in the alkanol headgroup region is 10% greater than either bulk water or the ordered headgroup region found in alkanol monolayers at the water-vapor interface. We conjecture that this higher density is a result of water penetration into the headgroup region of the disordered monolayer. A ratio of 1:3 water to alkanol molecules is consistent with our data. We also place an upper limit of one hexane to five or six alkanol molecules mixed into the alkyl chain region of the monolayer. In contrast, H(CH(2))(30)OH at the water-vapor interface forms a close-packed, ordered phase of nearly rigid rods. Interfacial tension measurements as a function of temperature reveal a phase transition at the water-hexane interface with a significant change in interfacial excess entropy. This transition is between a low temperature interface that is nearly fully covered with alkanols to a higher temperature interface with a much lower density of alkanols. The transition for the shorter alkanols appears to be first order whereas the transition for the longer alkanols appears to be weakly first order or second order. The x-ray data are consistent with the presence of monolayer domains at the interface and determine the domain coverage (fraction of interface covered by alkanol domains) as a function of temperature. This temperature dependence is consistent with a theoretical model for a second order phase transition that accounts for the domain stabilization as a balance between line tension and long range dipole forces. Several aspects of our measurements indicate that the presence of domains represents the appearance of a spatially inhomogeneous phase rather than the coexistence of two homogeneous phases.  相似文献   

7.
Previous work has demonstrated that semifluorinated alkanes CnF2n+1CmH2m+1 (FnHm diblocks), when used in conjunction with phospholipids, strongly stabilize fluorocarbon (FC)-in-water emulsions destined to be used as oxygen carriers. Although the presence of FnHm diblocks in the emulsion's interfacial phospholipid film was suggested to account for the observed stabilization, no direct proof of the diblock's location has been provided so far. We now report definite experimental evidence of the diblock's presence at the interfacial film, both on a macroscopic level by investigating the FC/water interface using the pendant drop method and directly on emulsions by monitoring their stability for various phospholipid chain lengths. We first establish that F8H16 has a strong cosurfactant effect with phospholipids [dimyristoylphosphatidylcholine (DMPC), dilaurylphosphatidylcholine (DLPC), dioctanoylphosphatidylcholine (PCL8)] at a perfluorooctyl bromide (PFOB)/water interface, as evidenced by a dramatic F8H16-concentration-dependent decrease of the interfacial tension. Where FC emulsions are concerned, we show that the stabilization effect, which consists of a decrease of the rate of molecular diffusion of the FC, depends strongly on the length of the phospholipid's fatty chain as compared to the length of the hydrocarbon segment, Hm, of the diblock. Stabilization is maximized when the Hm length is similar to that of the phospholipid's fatty chains. A strong mismatch between Hm and the phospholipid chain length can actually destabilize the emulsion. A different destabilization mechanism is then at work: coalescence. The presence of F8H16 at the interfacial film is further supported by the fact that perfluorodecyl bromide, a heavy analogue of PFOB that stabilizes PFOB emulsions by lowering the solubility and diffusibility of the emulsion's dispersed FC phase, exercises its stabilizing effect similarly for all the phospholipids investigated.  相似文献   

8.
The interfacial properties of diblock (AB) copolymers near an interface between two solvents are studied by using the exact Green's function of a Gaussian copolymer chain at an attractive penetrable interface. We have studied the mean‐square end‐to‐end distance of the copolymer, 〈R2(z)〉, as a function of the distance of the joint point of the copolymer to the interface, z, the segment density distribution ρ(z), and the reduction of the interfacial tension Δγc due to the presence of the diblock copolymer. The density profile and the stretching of the copolymer chain are in agreement with both experimental results and simulations. The reduction in the interfacial tension is found to decrease with the increase in the degree of polymerization of the copolymer chain.  相似文献   

9.
We have obtained the interfacial properties of short rigid-linear chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapour-liquid interface. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janec?ek [J. Phys. Chem. B 110, 6264-6269 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 4, and 5 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtain density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The surface tension has been scaled by critical properties and represented as a function of the difference between coexistence densities relative to the critical density.  相似文献   

10.
A polymerizable cationic gemini surfactant, [CH(2)=C(CH(3))COO(CH(2))(11)N(+)CH(3))(2)CH(2)](2).2Br(-), 1 has been synthesized and its basic interfacial properties were investigated (in water and in the presence of 0.05 M NaBr). For comparison, the properties of monomeric surfactant corresponding to 1, CH(2)=C(CH(3))COO(CH(2))(11)N(+)(CH(3))(3).Br(-), 2, were also investigated. Parameters studied include cmc (critical micelle concentration), C(20) (required to reduce the surface tension of the solvent by 20 mN/m), gamma(cmc) (the surface tension at the cmc), Gamma(cmc) (the maximum surface excess concentration at the air/water interface), A(min) (the minimum area per surfactant molecule at the air/water interface), and cmc/C(20) ratio (a measure of the tendency to form micelles relative to adsorb at the air/water interface). For the polymerizable gemini surfactant, 1, the methacryloxy groups at the terminal of each hydrophobic group in a molecule have no contact with the air/water interface in the monolayer, whereas for the corresponding monomeric surfactant, 2, the methacryloxy group contacts at the interface forming a looped configuration like a bolaamphiphile. Polymerized micelles of the gemini surfactant are fairly small monodisperse and spherical particles with a mean diameter of 3 nm.  相似文献   

11.
通过原子转移聚合合成了大分子引发剂PBMA Br及系列含氟两嵌段共聚物P(BMA b FAEM) ,并利用1 H NMR、F EA、GPC、FTIR对其结构进行了表征 .所合成的含氟嵌段共聚物膜具有低临界表面张力 .本文通过接触角的测定研究了含氟两嵌段共聚物的憎水、憎油性能与共聚物的含氟量 ,热处理温度 ,热处理时间的关系 ,结果表明含氟嵌段PFAEM具有向空气 聚合物界面富集的倾向 ,在共聚物中引入含氟嵌段可以明显提高共聚物的憎水、憎油性 .当含氟嵌段达 7 6wt%时 ,临界表面张力 (γc =18 7mN m)已与聚四氟乙烯相当 (γc=18 5mN m) ,显示出明显的低表面能特征  相似文献   

12.
Most research on copolymers with fluorinated monomers has focused on the relationship between fluorinated monomer content and the corresponding surface structure. However, the influence of the non-fluorinated block on the surface structure of the copolymer film is unknown. Various molecular weight poly(butyl methacrylates) (PBMA) end-capped with 2-perfluorooctylethyl methacrylate (FMA) units (PBMA-ec-FMA) have been synthesized by atom transfer radical polymerization (ATRP). The effect of the PBMA block length on the surface structure and properties of the polymers both in the solid state and in solution was investigated using various techniques. X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy and X-ray diffraction (XRD) analyses indicated that longer PBMA blocks enhanced both the enrichment of the fluorinated moieties and the order of the packing orientation of the perfluoroalkyl side chains on the surface. This enhancement was attributed mainly to the molecular aggregate structure of the end-capped polymers with long PBMA blocks in the solution and to the interfacial structure at the air/liquid interface, which favors the -(CF2)7CF3 moieties self-assembling on the polymer surface during film formation. This observation suggests that the polyacrylate block structure in fluorinated diblock copolymers, in addition to the fluorinated monomer content, plays an important role in structure formation on the solid surface.  相似文献   

13.
Novel, fluorinated copolymers with different architectures bearing sulfopropyl groups were synthesized in a three‐step procedure. The first step involved atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers followed by two modification reactions performed on the polymer chain: demethylation and sulfopropylation. As a result two types of fluorinated copolymers were obtained. The first one was synthesized by ATRP of 2,3,5,6‐tetrafluoro‐4‐methoxystyrene (TFMS). After the modification steps copolymers with randomly distributed sulfopropyl groups along the backbone were obtained. The second type of copolymers has diblock architecture with one of the blocks being sulfopropylated. They were synthesized via ATRP of 2,3,4,5,6‐pentafluorostyrene (FS) initiated by a PTFMS‐macroinitiator followed by demethylation and sulfopropylation of the TFMS‐block. The copolymers were characterized by size‐exclusion chromatography, FTIR, and 1H NMR spectroscopy. Their thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7827–7834, 2008  相似文献   

14.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed.  相似文献   

15.
We reported previously (Macromolecules 2003, 36, 5321; Langmuir, 2004, 20, 7412) that amphiphilic diblock copolymers having polyelectrolytes as a hydrophilic segment show almost no surface activity but form micelles in water. In this study, to further investigate this curious and novel phenomenon in surface and interface science, we synthesized another water-soluble ionic amphiphilic diblock copolymer poly(hydrogenated isoprene)-b-sodium poly(styrenesulfonate) PIp-h2-b-PSSNa by living anionic polymerization. Several diblock copolymers with different hydrophobic chain lengths were synthesized and the adsorption behavior at the air/water interface was investigated using surface tension measurement and X-ray reflectivity. A dye-solubilization experiment was carried out to detect the micelle formation. We found that the polymers used in this study also formed micelles above a certain polymer concentration (cmc) without adsorption at the air-water interface under a no-salt condition. Hence, we further confirmed that this phenomenon is universal for amphiphilic ionic block copolymer although it is hard to believe from current surface and interface science. For polymers with long hydrophobic chains (more than three times in length to hydrophilic chain), and at a high salt concentration, a slight adsorption of polymer was observed at the air-water interface. Long hydrophobic chain polymers showed behavior "normal" for low molecular weight ionic surfactants with increasing salt concentration. Hence, the origin of this curious phenomenon might be the macroionic nature of the hydrophilic part. Dynamic light scattering analysis revealed that the hydrodynamic radius of the block copolymer micelle was not largely affected by the addition of salt. The hydrophobic chain length-cmc relationship was found to be unusual; some kind of transition point was found. Furthermore, very interestingly, the cmc of the block copolymer did not decrease with the increase in salt concentration, which is in clear contrast to the fact that cmc of usual ionic small surfactants decreases with increasing salt concentration (Corrin-Harkins law). These behaviors are thought to be the special, but universal, characteristics of ionic amphiphilic diblock copolymers, and the key factor is thought to be a balance between the repulsive force from the water surface by the image charge effect and the hydrophobic adsorption.  相似文献   

16.
The synthesis of fluorinated polyimide/fluorinated polyhybridsiloxane (FPI–FPHSX) block copolymers was achieved through the polycondensation of α,ω‐dichlorosilane fluorinated polyimides and α,ω‐disilanol fluorinated polyhybridsiloxanes. Three FPI–FPHSX block copolymers with 41, 50, and 76 wt % polyimide were synthesized and characterized by the tuning of the number‐average molecular weight of the soft polyhybridsiloxane segments. The influence of the soft‐segment length on the behavior of the thermoplastic elastomer material was studied, including the surface tension and thermal properties. The thermomechanical properties of the FPI–FPHSX block copolymers were also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2237–2247, 2005  相似文献   

17.
Semifluorinated alkanes (SFAs) are diblock molecules, in which two mutually immiscible moieties, namely the hydrocarbon segment and the perfluorinated segment are bound covalently. The presence of two opposing segments within one molecule makes semifluorinated alkanes a very interesting class of compounds, which show a particular behavior both in bulk and at interfaces. Their highly asymmetric structure, arising from the incompatibility of the both constituent parts, results in surface activity of these molecules (so-called primitive surfactants) when dissolved in organic solvents, and allows for the Langmuir monolayer formation if spread at the air/water interface, despite of the absence of any polar group. Since 1984 (when SFAs have been characterized for the first time by Rabolt et al. [Rabolt JF, Russell TP, Twieg RJ. Macromolecules 1984;17:2786]), semifluorinated alkanes have been subjected to many studies. The present article reviews the results obtained so far and covers the aspects of their synthesis, properties in bulk (solutions and solid state) and applications. Special emphasis is put on the Langmuir monolayer properties and self-organization of SFAs on solid substrates.  相似文献   

18.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

19.
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.  相似文献   

20.
Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号