首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Mg1−x Alx(OH)2][(NO3)x, nH2O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar (R=(1−x)/x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg2AlNO3 displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg2AlNO3 at 40 °C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated. The experimental values for ΔG° in temperature range between 10 and 40 °C were found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange.  相似文献   

2.
Subcritical water (<374 °C and <221 bar) has unique characteristics such as dramatically decreased dielectric constant, surface tension, and viscosity with increasing temperature, allowing for dissolution and reaction of organics in high-temperature water to occur. Additionally, the dissociation constant of water at temperatures of 200-300 °C is three orders of magnitude greater than that of ambient water, which may also contribute to the reactivity of subcritical water with certain organic compounds. In this study, the degradation and oxidation of phenanthrene in subcritical water were investigated. Both deionized water and water with 3% hydrogen peroxide were used in the degradation and oxidation studies. The effect of temperature on degradation efficiency has been determined with a temperature range of 100-350 °C. When the temperature was increased from 150 to 350 °C, the amount of phenanthrene degraded varied from 6 to 243 μg in each milliliter of deionized water. However, these quantities were increased to 195 μg at 150 °C and 3680 μg at 350 °C in each milliliter of water with 3% hydrogen peroxide. Several degradation products including phenol, benzoic acid, and ketones were identified by using gas chromatography/mass spectrometry (GC/MS).  相似文献   

3.
The interaction of brilliant red X-3B (BRX) with bovine serum albumin (BSA) in three pH media has been characterized by the spectral correction technique. The binding number maximum of BRX was determined to be 102 at pH 2.03, 82 at pH 3.25 and 38 at pH 4.35 and the binding mechanism was analyzed in detail. The effects of ionic strength from 0 to 1 mol L−1 and temperature from 20 to 70 °C on the binding were investigated. The results showed that the interaction of BRX with BSA responded to the Langmuir adsorption isothermal model and the binding constant was determined. From the correlation between the binding number and the number of basic amino acid residues, the ion-pair attraction induced the union of non-covalent bonds including H-bond, van der Waals force and hydrophobic bond and the binding model was illustrated. The binding of BRX to BSA has resulted in change of the BSA conformation confirmed by means of circular dichroism. Using this interaction at pH 2.03, a sensitive method named the absorbance ratio difference spectrometry was established and applied to the protein assay and the limit of detection of protein was only 6 μg L−1. Two samples were determined and the results were in agreement with those obtained by the classical coomassie brilliant blue colorimetry.  相似文献   

4.
In situ polymerized PS/EPDM blends were prepared by dissolving poly(ethylene-co-propylene-co-2-ethylidene-5-norbornene) (EPDM) in styrene monomer, followed by bulk polymerization at 60 °C and 80 °C . EPDM has excellent resistance to such factors as weather, ozone and oxidation, attributed to its non-conjugated diene component, and it could be a good alternative for substituting polybutadiene-based rubbers in PS toughening. The in situ polymerized blends were characterized by dynamic mechanical analysis, thermogravimetric analysis, gel permeation chromatography, and tensile and Izod impact resistance tests. The PS/EPDM blends are immiscible and present two phases, a dispersed elastomeric phase (EPDM) in a rigid PS matrix whose phase behavior is strongly affected by the polymerization temperature. Mechanical properties of the blends are influenced by the increase in the average size of EPDM domains with the increase in the polymerization temperature and EPDM content. The blends polymerized at 60 °C containing 5 wt% of EPDM presents an increase in the impact resistance of 80% and containing 17 wt% of EPDM presents an increase in the strain at break of 170% in comparison with the value of PS. The blend polymerized at 80 °C containing 17 wt% of EPDM presents an increase in the strain at break of 480% and in impact resistance of 140% in comparison with the value of PS.  相似文献   

5.
Ming-Chi Wei 《Talanta》2007,72(4):1269-1274
The novel pretreatment technique, microwave-assisted heating coupled to headspace solid-phase microextraction (MA-HS-SPME) has been studied for one-step in situ sample preparation for polycyclic aromatic hydrocarbons (PAHs) in aqueous samples before gas chromatography/flame ionization detection (GC/FID). The PAHs evaporated into headspace with the water by microwave irradiation, and absorbed directly on a SPME fiber in the headspace. After being desorbed from the SPME fiber in the GC injection port, PAHs were analyzed by GC/FID. Parameters affecting extraction efficiency, such as SPME fiber coating, adsorption temperature, microwave power and irradiation time, and desorption conditions were investigated.Experimental results indicated that extraction of 20 mL aqueous sample containing PAHs at optional pH, by microwave irradiation with effective power 145 W for 30 min (the same as the extraction time), and collection with a 65 μm PDMS/DVB fiber at 20 °C circular cooling water to control sampling temperature, resulted in the best extraction efficiency. Optimum desorption of PAHs from the SPME fiber in the GC hot injection port was achieved at 290 °C for 5 min. The method was developed using spiked water sample such as field water with a range of 0.1-200 μg/L PAHs. Detection limits varied from 0.03 to 1.0 μg/L for different PAHs based on S/N = 3 and the relative standard deviations for repeatability were <13%. A real sample was collected from the scrubber water of an incineration system. PAHs of two to three rings were measured with concentrations varied from 0.35 to 7.53 μg/L. Recovery was more than 88% and R.S.D. was less than 17%. The proposed method is a simple, rapid, and organic solvent-free procedure for determination of PAHs in wastewater.  相似文献   

6.
A novel acrylic monomer bearing acridinyl group, acridine-9-N-acrylamide (Ac-9AA) was synthesized from 9-aminoacridine (9AA) and acryloyl chloride in the presence of triethylamine in dry dichloromethane (CCl2) at room temperature. The synthesized Ac-9AA was identified by IR, MS and 1H NMR spectra. Homopolymer of Ac-9AA was obtained using AIBN as a thermal initiator in THF under 65-70 °C and the average molecular weights (Mw) of poly(Ac-9AA) obtained was very low, being in the order of ca. 103. Copolymer of Ac-9AA and acrylamide was synthesized with thermal initiator and poly(Ac-9AA-co-AM) was characterized by the method of IR, UV-vis and DSC. The photophysical behaviors of Ac-9AA and its polymers were explored by recording the fluorescence spectra in solution, solid and film. In addition, the pH and temperature dependence on fluorescence of the water-soluble poly(Ac-9AA-co-AM) were investigated in detail. The results showed that the relative fluorescence intensity of poly(Ac-9AA-co-AM) had an excellent linear response to temperature in the range of 0-60 °C. Moreover, the fluorescence intensity increased continuously from low pH to high pH while the excitation maxima at 388 nm and emission maxima at 400 nm had redshift after the addition of HCl or NaOH, which results from the fact that the predominance of tautomeric forms of Ac-9AA changed at different medium. This investigation may provide a convenient way to prepared multifunctional macromolecule biomaterial bearing aminoacridine to probe pH and temperature in biological system.  相似文献   

7.
The homogeneous polymerization of 3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate (MDAPS) with potassium peroxydisulfate (KPS) was kinetically in situ investigated in water by means of FT-near IR spectroscopy. The overall activation energy of the polymerization was calculated to be 16.0 kcal/mol. The initial polymerization rate (Rp) at 40 °C was expressed by Rp=k[KPS]0.65[MDAPS]1.0. The presence of alkaline metal salts was observed to accelerate the polymerization. The order of acceleration at 40 °C was CsCl > KCl > NaCl > LiCl when the chloride salts were used. NaCl showed higher acceleration effect than NaF. NaBr and NaI exhibited retardation and inhibition effect, respectively, because of reduction of KPS and its primary radical with bromide and iodide ions. The polymerization of MDAPS with KPS in water in the presence of NaCl at 2.0 mol/l gave Rp=k[KPS]0.70[MDAPS]1.4 at 40 °C. The overall activation energy of the polymerization in the presence of NaCl was estimated to be 11.6 kcal/mol being considerably lower value compared with that in its absence. The syndiotacticity of poly(MDAPS) tended to increase with rising temperature and decrease in the presence of NaCl.  相似文献   

8.
Single phase MnPS3 powder was prepared by solid state reaction between Mn, S and P carried out at 650 °C in evacuated silica tube. The structure, morphology and sorption characteristics of the prepared solid were investigated. The results revealed that the obtained MnPS3 compound was capable of adsorbing 3.5 wt% hydrogen at −193 °C and a pressure of 30 bar. Little amount of hydrogen (0.07 wt%) was adsorbed at room temperature. The hydrogen adsorption/desorption cycles at various temperatures did not result in irreversible chemical structural changes of the MnPS3 compound, but the microstructure after hydrogen cycling diminished and became finer.  相似文献   

9.
Superabsorbent copolymers of acrylamide (Am) and itaconic acid (ItA) were prepared by free radical solution polymerization using sodium persulfate and N,N,N′,N′-tetramethylenediamine (TMEDA) as initiating system at 35 °C. Two series were prepared. The first series (SA series) used varied amount of itaconic acid and fixed amount of N,N′-methylenebisacrylamide (MBAm), while in the second series (SB series) the amount of (MBAM) changed and the amount of itaconic acid was fixed. The swelling behavior was studied at room temperature and the swelling percentage, swelling kinetics parameters such as initial swelling rate, swelling rate constant, and diffusion parameters were determined. The effect of pH and saline sensitivity on swelling behavior was also studied.  相似文献   

10.
Zeolite rho was prepared by hydrothermal synthesis using an 18-crown-6 ether (18C6) as a structure-directing agent, and the effects of the calcination temperature for removal of 18C6 on the physicochemical properties and CO2-adsorption properties were investigated. CO2 adsorption on zeolite rho calcined at 150 °C was lower than that on samples calcined at temperatures above 300 °C. For samples calcined above 300 °C, CO2 adsorption increased with increasing calcination temperature up to 400 °C. It is thought that the pore volume for adsorption of CO2 increased as a result of 18C6 removal, resulting in increasing CO2 adsorption. A decrease in CO2 adsorption for calcination from 400 °C to 500 °C was observed. The particle size of zeolite rho increased with increasing 18C6 molar ratio. Particle sizes of 1.0-2.1 μm and 1.4-2.6 μm were found by field-emission scanning electron microscopy and dynamic light-scattering, respectively. The particle size is controlled in these regions by adjusting the 18C6 molar ratio. XRD showed that zeolite rho samples with 18C6 molar ratios of 0.25-1.5 had high crystallinity. The adsorbed amount of CO2 is almost constant, at 3.4 mmol-CO2 g−1, regardless of the 18C6 molar ratio. However, CO2 selectivity, which is the CO2/N2 adsorption ratio, decreased. The amount of CO2 adsorbed on zeolite rho is lower than that on zeolite NaX, but higher than that on SAPO-34. The CO2/N2 adsorption ratio for zeolite rho was higher than those for SAPO-34 and zeolite NaX.  相似文献   

11.
A new series of low melting and hydrophobic ionic liquids (ILs) containing the bis[bis(pentafluoroethyl)phosphinyl]imide anion, [(C2F5)2P(O)]2N (FPI), and ammonium, phosphonium, imidazolium, pyridinium or pyrrolidinium cations were prepared and characterized. Their density, viscosity, melting point, glass transition temperature, decomposition temperature and conductivity are discussed. Many of these ionic liquids are liquids at room temperature with melting points below 15 °C, viscosities below 110 mm2 s−1 and thermal stabilities above 300 °C.  相似文献   

12.
Spruce sulphite cellulose (number average degree of polymerization 620) dissolved in an aqueous solution of 8% (w/w) LiOH*H2O and 12% (w/w) urea was methylated with dimethyl sulphate (DMS). By varying the reaction temperature between 22 and 50 °C, the molar ratio between 9 and 15 mol DMS per mol anhydroglucose unit, and the reaction time from 4 to 24 h, methyl cellulose (MC) with degree of substitution (DS) values in the range of 1.07 and 1.59 was prepared. The chemical structure of MC was analysed by FTIR and 1H NMR spectroscopy. The turbidity (given in nephelometric turbidity units, NTU) of the aqueous solution of MC reached an optimum of 10 NTU for a product obtained with 12 mol DMS/mol AGU at 50 °C. GPC measurements revealed polymer degradation to a certain extent. The intrinsic viscosity and the Huggins constant k of the MC samples increased with increasing DS value. The MC samples possess k values higher than 0.8, indicating association of the polymer chain. The zero-shear viscosity decreased with increase of both temperature and the amount of methylation agent due to the depolymerization. During the heating/cooling cycle (20-90 °C) of the aqueous solutions of MC, it was observed that samples synthesized at 22 °C with DS values lower than 1.3 did not undergo phase separation in aqueous solution. Phase separation hysteresis with a precipitation temperature up to 80 °C was obtained for aqueous solutions of MC with DS values between 1.07 and 1.66 synthesized at higher temperatures. The functionalization pattern determined by GLC of the corresponding partially methylated glucitol acetates is close to randomness and comparable with those of commercial MC samples.  相似文献   

13.
Novel biodegradable pH- and thermal-responsive interpenetrating polymer network (IPN) hydrogels were prepared for controlled drug delivery studies. The IPN hydrogels were obtained in mild aqueous acid media by irradiation of solutions of N-acryloylglycine (NAGly) mixed with chitosan, in the presence of glutaraldehyde as a crosslinking agent and using 2,2-dimethoxy-2-phenyl acetophenone as photoinitiator. These hydrogels were subjected to equilibrium swelling studies at different temperatures (25 °C, 37 °C and 45 °C) in buffer solutions of pH 2.1 and 7.4 (similar to that of gastric and intestinal fluids respectively). 5-Fluorouracil (5-FU) was entrapped in the hydrogels, and drug release studies carried out at 37 °C in buffer solutions at pH 2.1 and 7.4.  相似文献   

14.
An approach using systematic optimization for the formation of an albumin molecularly imprinted polymer (MIP), able to separate albumin from proteins in solution, has been prepared by imprinting albumin using a copolymer comprising 3-dimethylaminopropyl methacrylate and tetraethylene glycol dimethacrylate in a mole ratio of 1 to 8. Cytochrome c, lysozyme and myoglobin were used in competitive re-binding experiments to compete with the polymer's native template with all protein species present at 0.0004 g mL− 1. The effects of: monomer to crosslinker mole ratio, polymerization temperature and time were investigated. It was found that the addition of water 6.04%, into the pre-polymerization albumin-monomer complex enhanced the adsorption capacity and selectivity of the resulting MIP from 2.18 × 10− 3 to 6.02 × 10− 3 g g-MIP− 1 and 83.5% to 98.7%, respectively. These results also showed that the MIP possessed high selectivity and adsorption capacity with respect to albumin in comparison with interfering species also present in solution. Polymerization temperature, time and the water content of the pre-polymerization mixture were all shown to have significant effects on the resulting albumin-MIP's performance. However, their influence on the polymer's affinity for the potentially interfering species was negligible. Additionally, higher polymerization temperatures (> 38 °C) and extended polymerization times (> 60 h) increased monomer conversion as determined by HPLC, but decreased the selectivity and adsorption capacity of the MIP. An optimized MIP, with very high selectivity and 6.37 × 10− 3 g g-MIP− 1 template re-adsorption capacity was obtained using the following polymerization conditions: 0.125 mole ratio of monomer to crosslinker, 6.04 wt.% water content with respect to the mass of the monomer complex, 60 h polymerization time at 38 °C, and with 0.47% albumin in the pre-polymerization monomer complex. Finally, the functions of polymerization temperature, time and the significance of the water content in the albumin-monomer complex are also discussed.  相似文献   

15.
In the present work two separation techniques, namely the gravitational field-flow fractionation (GrFFF) and the reversed-flow gas chromatography (RFGC), are proposed for the distinction of the growth phases of Saccharomyces cerevisiae (AXAZ-1) yeast cycle at different temperatures (30 °C, 25 °C, 20 °C, and 15 °C) and pH (2.0, 3.0, 4.0 and 5.0) values. During the fermentation processes, differences observed in the peak profiles, obtained by GrFFF, can be related with the unlike cell growth. The distinction of the phases of AXAZ-1 cell cycle with the GrFFF, was also confirmed with the RFGC technique, which presented similar fermentation time periods for the alcoholic fermentation phases. Simultaneously, the reaction rate constant for each phase of the fermentation process and the activation energies were determined with the aid of the RFGC technique. Finally, the application of both the GrFFF and the RFGC techniques, in combination with high-performance liquid chromatography, allowed us to find the ideal experimental conditions (temperature and pH) for the alcoholic fermentation by AXAZ-1. The results indicate that S. cerevisiae cells performed better at 30 °C, whereas at lower temperatures decreases in the fermentation rate and in the number of viable cells were observed. Moreover, the pH of the medium (pH 5.0) resulted in higher fermentation rates and ethanol productivities.  相似文献   

16.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalons have been shown to have visible color and unique spectral properties, which both depend on solution temperature and pH. In this investigation, pNIPAm-co-AAc microgel-based etalons were fabricated on the Au electrode of a quartz crystal microbalance (QCM), and the resonant frequency of the QCM monitored as a function of temperature, at pH 3.0. Furthermore, the resonant frequency at either pH 3.0 or 7.0 was monitored while keeping the solution temperature constant at various temperatures. In all cases, when the solution temperature was below the collapse transition for the microgels (∼32 °C), the resonant frequency at pH 3.0 was lower than at pH 7.0, which we attribute to the film transitioning from a deswollen to swollen state, respectively. It was observed that the magnitude of the resonant frequency change increased as the solution temperature approached the collapse temperature for the microgels. The overall sensitivity to pH was determined to be 1.3 × 10−8 M [H+] Hz−1 and a theoretical detection limit of 390 nM was obtained. This sensitivity will be exploited further for future biosensing applications.  相似文献   

17.
Synthesis, characterization and solution properties of a new series of the PNIPAM-soybean oil and/or polypropylene glycol, PPG, conjugates (conjugates also referred to as co-networks) have been described. For this purpose free radical polymerization of NIPAM monomer was initiated by macroinitiators based on PSB and/or PPG in order to obtain PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM cross-linked graft copolymers. The autooxidation of soybean oil under air at room temperature rendered waxy soluble polymeric soybean oil peroxide associated with cross-linked parts. The soluble polymeric oil macro-peroxide isolated from the cross-linked part was used to initiate the free radical polymerization of NIPAM to give PSB-g-PNIPAM cross-linked copolymer. To obtain PPG-macromonomeric initiator, PPG-MIM, PPG-bis amino propyl ether with Mn 400 (or 2000) Dalton was reacted with 4,4′-azo bis cyanopentanoyl chloride and methacryloyl chloride, respectively. PPG-MIM also initiated the free radical polymerization of NIPAM at 80 °C to yield PPG-g-PNIPAM cross-linked thermoresponsive product. In order to obtain PSB-g-PPG-g-PNIPAM cross-linked triblock copolymer, NIPAM was polymerized by using the mixture of two macroinitiators, PSB and PPG-MIM. PSB contents in the graft copolymers were calculated via elemental analysis of nitrogen in graft copolymers. Thermal analysis, SEM, FTIR and 1H NMR techniques were used in the characterization of the products. The effect of polymeric soybean oil, PSB, and/or PPG on the thermal response rate of poly(N-isopropylacrylamide, PNIPAM, cross-linked-graft copolymers swollen in water has been investigated by means of swelling-deswelling and drug release behaviors against to temperature change. Lower critical solution temperatures (LCST) of the cross-linked PNIPAM conjugates (conjugates also referred to as co-networks) were determined from the curves of swelling degrees versus solution temperatures. The response temperature of the hydrophobically modified PNIPAM conjugates was reduced to 27 °C, 23 °C and 27 °C for PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM, respectively. We have found that the graft copolymers were not pH-responsive. In addition, higher pH ranges cause the hydrolysis of the PSB ester linkages, quickly and makes the cross-linked graft copolymers soluble.The fastest shrinking of the gels was observed by loosing water between 65% and 98% at 50 °C.Methyl orange (MO), was used as a model drug, loaded into cross-linked graft copolymers to examine and compare the effects of controlled release at lower and higher temperatures of lower critical solution temperature (LCST).  相似文献   

18.
Precipitation polymerization of N-isopropylacrylamide (NIPAM) with methylenebisacrylamide (MBAAm) in water at 70°C gave thermosensitive hydrogel microspheres. The adsorbability of proteins on the poly-NIPAM microspheres was found to depend on temperature. Below the lower critical solution temperature (LCST) of poly-NIPAM in an aqueous medium, that is, around 32°C, the microspheres hold a large amount of water inside and their surface is hydrophilic enough to suppress the adsorption of proteins. On the contrary, above 32°C, the micropheres deswell and their surface becomes hydrophobic and, consequently, susceptible to adsorption of a large amount of proteins. Proteins once adsorbed on the microspheres at a high temperature could be desorbed more or less by lowering the temperature to below 32°C. The extent of desorption at low temperatures was found to depend on the incubation time for adsorption at high temperatures.  相似文献   

19.
An anion substitution route was utilized for lowering the dielectric loss in CaCu3Ti4O12 (CCTO) by partial replacement of oxygen by fluorine. This substitution reduced the dielectric loss, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 °C. In particular, CaCu3Ti4O11.7F0.3 exhibited a giant dielectric constant over 6000 and low dielectric loss below 0.075 at 100 kHz within a temperature range of 25-200 °C. Fluorine analysis confirmed the presence of fluorine in all samples measured.  相似文献   

20.
Antonio P  Iha K  Suárez-Iha ME 《Talanta》2004,64(2):484-490
The adsorption of DPKSH onto silica gel was investigated, at 25±1 °C and pH 1, 4.7 and 12. For the same DPKSH concentration interval, the minimum required time of contact for adsorption maximum at pH 4.7 was smaller than at pH 1 and the maximum amount of DPKSH adsorbed per gram of silica at pH 1 is smaller than at pH 4.7. At pH 12 the DPKSH adsorption onto silica gel was not significant. The adsorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The maximum amount of solute adsorbed (madsmax) and the adsorption constant, KL, were derived from Langmuir isotherm. The Freundlich constants 1/n and KF related, respectively, to the energetic heterogeneity of adsorption sites and an empirical constant were evaluated. The mean sorption free energy (E) of DPKSH adsorption onto silica gel was calculated from D-R isotherm indicating a physical adsorption mode. Finally, conductimetric titrations showed the silica particle basicity and acidity as 0.002 and 0.3 mmol g−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号