首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An index formula is proved for elliptic systems of P.D.E.'s with boundary values in a simply connected region in the plane. Let denote the elliptic operator and the boundary operator. In an earlier paper by the author, the algebraic condition for the Fredholm property, i.e. the Lopatinskii condition, was reformulated as follows. On the boundary, a square matrix function defined on the unit cotangent bundle of was constructed from the principal symbols of the coefficients of the boundary operator and a spectral pair for the family of matrix polynomials associated with the principal symbol of the elliptic operator. The Lopatinskii condition is equivalent to the condition that the function have invertible values. In the present paper, the index of is expressed in terms of the winding number of the determinant of .

  相似文献   


2.
The viscous quantum hydrodynamic model derived for semiconductor simulation is studied in this paper. The principal part of the vQHD system constitutes a parameter‐elliptic operator provided that boundary conditions satisfying the Shapiro–Lopatinskii criterion are specified. We classify admissible boundary conditions and show that this principal part generates an analytic semigroup, from which we then obtain the local in time well‐posedness. Furthermore, the exponential stability of zero current and large current steady states is proved, without any kind of subsonic condition. The decay rate is given explicitly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical solution of elliptic selfadjoint second-order boundary value problems leads to a class of linear systems of equations with symmetric, positive definite, large and sparse matrices which can be solved iteratively using a preconditioned version of some algorithm. Such differential equations originate from various applications such as heat conducting and electromagnetics. Systems of equations of similar type can also arise in the finite element analysis of structures. We discuss a recursive method constructing preconditioners to a symmetric, positive definite matrix. An algebraic multilevel technique based on partitioning of the matrix in two by two matrix block form, approximating some of these by other matrices with more simple sparsity structure and using the corresponding Schur complement as a matrix on the lower level, is considered. The quality of the preconditioners is improved by special matrix polynomials which recursively connect the preconditioners on every two adjoining levels. Upper and lower bounds for the degree of the polynomials are derived as conditions for a computational complexity of optimal order for each level and for an optimal rate of convergence, respectively. The method is an extended and more accurate algebraic formulation of a method for nine-point and mixed five- and nine-point difference matrices, presented in some previous papers.  相似文献   

4.
The problem of a stressed state in elliptic plates has been considered in general for a rigid contour fixation. It is much more difficult to obtain a solution for the freely supported plates, even for isotropic materials. In this paper we suggest an approach for defining the stressed state of thin elliptic plates with layered structure under the condition of a freely supported contour. The solution is obtained in a rectangular cartesian coordinate system. The displacements, which are the fundamental unknowns, are given in the form of polynomials with unknown coefficients defined by a system of algebraic equations. The resolving equations and three out of the four boundary conditions are satisfied precisely. One boundary condition, is satisfied by means of collocation method of separate points of the contour. Estimation of the accuracy of the suggested approach is carried out by comparing the obtained results with the known ones. The problem of deformation of a twolayered plate has been discussed, in which the principal direction of elasticity does not coincide with the coordinate directions.S. P. Timoshenko Institute of Mechanics, National Academy of Science of the Ukraine, Kiev. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 496–504, July–August, 1997. Original article submitted March 19  相似文献   

5.
We consider boundary value problems for elliptic operators with constant coefficients in a layer, i.e., in a domain between two parallel planes. We assume that the Lopatinskii condition and the condition of the unique solvability of an auxiliary problem for an ordinary differential operator are satisfied. We prove theorems on the solvability and smoothness of solutions in Sobolev spaces with weight of exponential type.  相似文献   

6.
This paper deals with a fast method for solving large‐scale algebraic saddle‐point systems arising from fictitious domain formulations of elliptic boundary value problems. A new variant of the fictitious domain approach is analyzed. Boundary conditions are enforced by control variables introduced on an auxiliary boundary located outside the original domain. This approach has a significantly higher convergence rate; however, the algebraic systems resulting from finite element discretizations are typically non‐symmetric. The presented method is based on the Schur complement reduction. If the stiffness matrix is singular, the reduced system can be formulated again as another saddle‐point problem. Its modification by orthogonal projectors leads to an equation that can be efficiently solved using a projected Krylov subspace method for non‐symmetric operators. For this purpose, the projected variant of the BiCGSTAB algorithm is derived from the non‐projected one. The behavior of the method is illustrated by examples, in which the BiCGSTAB iterations are accelerated by a multigrid strategy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A solution of the Dirichlet problem for an elliptic systemof equations with constant coefficients and simple complex characteristics in the plane is expressed as a double-layer potential. The boundary-value problem is solved in a bounded simply connected domain with Lyapunov boundary under the assumption that the Lopatinskii condition holds. It is shown how this representation is modified in the case of multiple roots of the characteristic equation. The boundary-value problem is reduced to a system of Fredholm equations of the second kind. For a Hölder boundary, the differential properties of the solution are studied.  相似文献   

8.
In this paper one investigates overdetermined elliptic systems with constant coefficients for which one can pose general boundary-value problems without overdetermination in the boundary conditions. One finds the algebraic condition which characterizes the indicated class of systems. It is shown that the general boundary-value problems for such systems are Noetherian in the subspace of vector-functions satisfying some purely differential consistency conditions.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. nA. Steklova AN SSSR, Vol. 47, pp. 138–154, 1974.  相似文献   

9.
Summary The convergence of semi-discrete and discrete linear approximation schemes is analysed for nonlinear degenerate parabolic systems of porous medium type. The enthalpy formulation and variational technique are used. The semi-discretization used reduces the original parabolic P.D.E. to linear elliptic P.D.E. The algebraic correction arising from nonlinearities is treated by Newton-like iterations in finite steps. Some numerical experiments are discussed and compared with the analytical solutions.Supported by the Alexander von Humboldt-Foundation in 1989, and by SFB 123, University Heidelberg  相似文献   

10.
1.IntroductionConsiderthesyllUnetricpositivedeflate(SPD)systemsoflinearequationsthatariseinfiniteelementdiscretisstionsofmanysecond-orderself-adjointellipticboundaryvalueproblems.Tosolvethisclassoflinearsystemsiteratively,AxelssonandVassilevski[1--4]preselltedthealgebraicmultileveliteration(AMLI)methodsbyreasonablyutilizingthemultigridtechniqueandthepolynomialaccelerationstrategy.Thesemethodsareamongthemostefficientiterativesolversbecausetheirpreconditioningmatricesarespectrallyequlvalellt…  相似文献   

11.
Summary The finite element discretization of many elliptic boundary value problems leads to linear systems with positive definite and symmetric coefficient matrices. Many efficient preconditioners are known for these systems. We show that these preconditioning matrices can also be used for the linear systems arising from boundary value problems which are potentially indefinite due to lower order terms in the partial differential equation. Our main tool is a careful algebraic analysis of the condition numbers and the spectra of perturbed matrices which are preconditioned by the same matrices as in the unperturbed case.  相似文献   

12.
We present and analyze a new fictitious domain model for the Brinkman or Stokes/Brinkman problems in order to handle general jump embedded boundary conditions (J.E.B.C.) on an immersed interface. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating two subdomains: they are well chosen to get the coercivity of the operator. It is issued from a generalization to vector elliptic problems of a previous model stated for scalar problems with jump boundary conditions (Angot (2003, 2005) [2], [3]). The proposed model is first proved to be well-posed in the whole fictitious domain and some sub-models are identified. A family of fictitious domain methods can be then derived within the same unified formulation which provides various interface or boundary conditions, e.g. a given stress of Neumann or Fourier type or a velocity Dirichlet condition. In particular, we prove the consistency of the given-traction E.B.C. method including the so-called do nothing outflow boundary condition.  相似文献   

13.
This article analyzes the solution of the integrated forms of fourth‐order elliptic differential equations on a rectilinear domain using a spectral Galerkin method. The spatial approximation is based on Jacobi polynomials P (x), with α, β ∈ (?1, ∞) and n the polynomial degree. For α = β, one recovers the ultraspherical polynomials (symmetric Jacobi polynomials) and for α = β = ?½, α = β = 0, the Chebyshev of the first and second kinds and Legendre polynomials respectively; and for the nonsymmetric Jacobi polynomials, the two important special cases α = ?β = ±½ (Chebyshev polynomials of the third and fourth kinds) are also recovered. The two‐dimensional version of the approximations is obtained by tensor products of the one‐dimensional bases. The various matrix systems resulting from these discretizations are carefully investigated, especially their condition number. An algebraic preconditioning yields a condition number of O(N), N being the polynomial degree of approximation, which is an improvement with respect to the well‐known condition number O(N8) of spectral methods for biharmonic elliptic operators. The numerical complexity of the solver is proportional to Nd+1 for a d‐dimensional problem. This operational count is the best one can achieve with a spectral method. The numerical results illustrate the theory and constitute a convincing argument for the feasibility of the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
1.IntroductionThediscretizationofmanysecondorderselfadjointellipticboundaryvalueproblemsbythefiniteelementmethodleadstolargesparsesystemsoflinearequationswithsymmetricpositivedefinite(SPD)coefficientmatrices.Fortheselinearsystems,algebraicmultilevelp...  相似文献   

15.
We consider boundary value problems in a half-space for a class of quasi-elliptic systems with constant coefficients. We assume that the boundary value problems satisfy the Lopatinskii condition. We obtain necessary and sufficient conditions for their unique solvability in Sobolev spaces.  相似文献   

16.
In this paper, we study effects of numerical integration on Galerkin meshless methods for solving elliptic partial differential equations with Neumann boundary conditions. The shape functions used in the meshless methods reproduce linear polynomials. The numerical integration rules are required to satisfy the so-called zero row sum condition of stiffness matrix, which is also used by Babuška et al. (Int. J. Numer. Methods Eng. 76:1434–1470, 2008). But the analysis presented there relies on a certain property of the approximation space, which is difficult to verify. The analysis in this paper does not require this property. Moreover, the Lagrange multiplier technique was used to handle the pure Neumann condition. We have also identified specific numerical schemes, diagonal elements correction and background mesh integration, that satisfy the zero row sum condition. The numerical experiments are carried out to verify the theoretical results and test the accuracy of the algorithms.  相似文献   

17.
We suggest a special choice of a basis in the linear span of columns of the “controllability matrix” for multi-input systems of neutral type with retarded argument, which permits one to obtain an effective sufficient solvability condition for the modal control problem for such systems. The proof of this condition provides a constructive way for designing the desired regulator by the feedback principle on the basis of the solution of linear algebraic systems over the ring of bivariate polynomials.  相似文献   

18.
In this paper we characterize the existence of principal eigenvalues for a general class of linear weighted second order elliptic boundary value problems subject to a very general class of mixed boundary conditions. Our theory is a substantial extension of the classical theory by P. Hess and T. Kato (1980, Comm. Partial Differential Equations5, 999-1030). In obtaining our main results we must give a number of new results on the continuous dependence of the principal eigenvalue of a second order linear elliptic boundary value problem with respect to the underlying domain and the boundary condition itself. These auxiliary results complement and in some sense complete the theory of D. Daners and E. N. Dancer (1997, J. Differential Equations138, 86-132). The main technical tool used throughout this paper is a very recent characterization of the strong maximum principle in terms of the existence of a positive strict supersolution due to H. Amann and J. López-Gómez (1998, J. Differential Equations146, 336-374).  相似文献   

19.
1. IntroductionConsider the large sparse system of linear equationsAx = b, (1.1)where, for a fixed positive integer cr, A e L(R") is a symmetric positive definite (SPD) matrir,having the bloCked formx,b E R" are the uDknwn and the known vectors, respectively, having the correspondingblocked formsni(ni S n, i = 1, 2,', a) are a given positthe integers, satisfying Z ni = n. This systemi= 1of linear equations often arises in sultable finite element discretizations of many secondorderseifad…  相似文献   

20.
In this article, the inverse source problems of 2D and 3D elliptic type nonlinear partial differential equations are resolved. For this purpose, a family of single-parameter homogenization functions that automatically meet the given boundary conditions are deduced and employed as the bases to expand the solution. We solve a linear algebraic equations system which satisfies the over-specified Neumann boundary condition to obtain the unspecified coefficients, and then the solution in the entire domain is permitted. Taking the solution into the governing equation, the unknown source function can be determined quickly. The present novel method is verified to be an accurate, effective, and robust scheme which is without solving nonlinear equations and iterations, and the additional data used are quite economical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号