首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.  相似文献   

2.
Synthetic monoclinic and tetragonal vanadium-doped zirconias (VZrO2) with vanadium loading ranging from 0.5 to 15 mol% are used to modify glassy carbon and graphite/polyester composite electrodes able to detect oxygen and hydrogen peroxide in neutral aqueous media. Electrodes modified by monoclinic VZrO2 decrease the overpotential for the reduction of oxygen and hydrogen peroxide in neutral and alkaline media and enhance their reduction currents with respect to unmodified carbon electrodes. This is associated to seven-coordinated vanadium centers isomorphously substituting zirconium ones in the ZrO2 lattice. The catalytic effect shows site-selectivity, since it is almost entirely absent in tetragonal VZrO2 in which eight-coordinated vanadium sites exists. Under optimized conditions using differential pulse detection mode, the height of the cathodic catalytic current peak is directly proportional to the hydrogen peroxide concentration over the concentration range 5-400 μM with a sensitivity of 170 μA/mM at pH 10.0. The detection limit (3σ) is calculated as 0.9 μM.  相似文献   

3.
The crystal structure of V0.985Al0.015O2 has been refined from single-crystal X-ray data at four temperatures. At 373°K it has the tetragonal rutile structure. At 323°K, which is below the first metal-insulator transition, it has the monoclinic M2 structure, where half of the vanadium atoms are paired with alternating short (2.540 Å) and long (3.261 Å) V-V separations. The other half of the vanadium atoms form equally spaced (2.935 Å) zigzag V chains. At 298°K, which is below the second electric and magnetic transition, V0.985Al0.015O2 has the triclinic T structure where both vanadium chains contain V-V bonds, V(1)-V(1) = 2.547 Å and V(2)-V(2) = 2.819 Å. At 173°K the pairing of the V(1) chain remains constant: V(1)-V(1) = 2.545 Å, whereas that of the V(2) chain decreases: V(2)-V(2) = 2.747 Å. From the variation of the lattice parameters as a function of temperature it seems that these two short V-V distances will not become equal at lower temperatures. The effective charges as calculated from the bond strengths at 298 and 173°K show that a cation disproportionation has taken place between these two temperatures. About 20% of the V4+ cations of the V(1) chains have become V3+ and correspondingly 20% of the V4+ cations of the V(2) chains have become V5+. This disproportionation process would explain the difference between the two short V-V distances. Also it would explain why the TM1 transition does not take at lower temperatures.  相似文献   

4.
A procedure is reported for the preparation of vanadium-doped zircon pigmenting system with different vanadia loadings which enabled their complete formation and further characterization. Vanadium-zircon solid solutions were prepared by gelling mixtures of ZrO2 and V2O5 colloidal sols and tetraethylorthosilicate and studied over the temperature range up to the formation of zircon. The reaction sequence of gels was evaluated by X-ray powder diffraction (XRD) and ultraviolet-visible (UV-Vis) diffuse reflectance. It was found that the first crystalline phase detected was a vanadium-containing tetragonal ZrO2 solid solution where vanadium was stabilized in the reduced V+4 state. The formation of the V-ZrSiO4 solid solution occurred by the reaction between the monoclinic form of V+4-ZrO2 solid solution and the amorphous silica phase. Energy dispersive X-ray microanalysis (SEM/EDX) data, measurements of lattice parameters and UV-Vis diffuse reflectance of V-ZrSiO4 solid solutions revealed that vanadium was dissolved as V+4 replacing Si+4 in tetrahedral sites in the crystal structure of zircon. The solubility limit of vanadium in ZrSiO4 was about 0.01 mole of vanadium per mole of zircon (0.5 wt% as V2O5).  相似文献   

5.
The results of Density Functional Theory (DFT) calculations on optical properties of vanadium complexes VOCl3, VOCl4 -, VOCl5 2-, as well as the VO4 3- ion, are presented. The spectra of excited states in the range 25000-60000 cm-1 have been analyzed using the time-dependent DFT method (TDDFT). Spectroscopic features of structural defects (low-coordinated (LC) oxygen ions), as well as surface point defects (F+ and F sites) in MgO, have been studied within the cluster approach. The charge-transfer spectra and frequencies of normal vibrations for a number of active site models of finely dispersed oxides MgO and V2O5 on silica have been calculated. Comparison of the obtained results with experimental electronic diffuse reflectance spectra and fundamental frequencies confirms a hypothesis about the structure of active centers of finely dispersed oxide V2O5 on silica as monomeric forms, (O=V-O n ).  相似文献   

6.
A New Access to Alkali Vanadates(IV,V) Crystal Structure of Rb2V3O8 By heating vanadium(V) oxide with rubidium iodide to 500°C, the vanadium experiences partial reduction and Rb2V3O8 is obtained. It has the fresnoite structure. Crystal data: a = 892.29(7), c = 554.49(9) pm at 20°C, tetragonal, space group P4bm, Z = 2. X-ray crystal structure determination with 620 observed reflexions, R = 0.027. V2O7 units share vertices with VO5 square pyramids, forming layers; a layer can be regarded as association product of VO2+ and V2O74? ions. The Rb+ ions between the layers have pentagonal-antiprismatic coordination.  相似文献   

7.
Nanocrystalline zirconia powders prepared by laser evaporation were analyzed by electron microscopy and X-ray diffraction. A very high volume fraction of tetragonal particles was found, although the majority of particles is significantly larger than the equilibrium size of the tetragonal → monoclinic transformation. Nanopowder of yttria stabilized (2.4 mol% Y2O3) zirconia was used to prepare nanocrystalline ceramics by pressureless sintering at T = 1400?°C. At T ≥ 1200?°C the samples show superplastic behavior with an activation energy of 585 kJ mol–1 and a stress exponent of about 1.8.  相似文献   

8.
In this paper we describe the synthesis and characterization of the acido–basic properties of catalysts containing varied amounts of vanadium supported on ZrO2. The preparation of the zirconia was carried out using a hydrolysis method and the vanadium was introduced by impregnation with a porous volume in several stages, followed by calcinations under air at a temperature of 723 K. The obtained samples are characterized by adsorption–desorption of nitrogen and infrared spectral analysis of different species formed by acidic and basic probes. This adsorption on the surface of these compounds has been studied in order, in the hand to investigate information on their surface acidity and in the other hand to know particularly the nature and strength of acidic and basic sites. Among the molecular probes, we used carbon monoxide, carbon dioxide, pyridine and 2,6-dimethylpyridine. The adsorption of CO has shown that contrary to pure zirconia and oxidized V2O5/ ZrO2, the reduced V2O5/ ZrO2 samples favour the formation of CO co-ordinated on Lewis acidic sites of reduced V2O5 species (CO on V4+ or V3+). We also observe the creation of Brønsted acidic sites by means of the incorporation of vanadium.  相似文献   

9.
EPR spectroscopy is used to study the electronic state of vanadium ions in HT- and LT-Li1+xV3O8. It is shown that in both cases the EPR spectra observed are attributed to vanadyl VO2+ ions (localized electron centers) with weak exchange interaction. The other type of registered electrons is characterized by larger mobility through a few V5+ ions, i.e., by a higher degree of delocalization (electron gas). Based on the analysis of the temperature dependence of the EPR line width, it is stated that the exchange interaction between localized electron centers proceeds through electron gas (C-S-C relaxation). It is found that HT-Li1+xV3O8 differs from LT-Li1+xV3O8 by the sloping form of its spectrum at g range connected with two types of VO2+ ions different in the direction of the crystal field axis corresponding to a short V=O2+ bond.  相似文献   

10.
A monoclinic structure with the unit cell content 2V7O3 and its derivative structure designated as V7O3+x have been determined by X-ray and electron diffraction study. In both the structures, the oxygen atoms occupy regularly special octahedral interstitial sites in the body-centered monoclinic (or pseudo-tetragonal) metal lattice with the axial ratio ca ≈ 1.2. The ordered distribution of the oxygen atoms is interpreted from the condition of minimization of the elastic strain in the vanadium lattice.  相似文献   

11.
The effects of nonstoichiometry upon the behavior of vanadium dioxide single crystals in the vicinity of the semiconductor/metal transition temperature (Tc) were experimentally investigated. According to the electrical and thermal measurements, more stoichiometric vanadium dioxide exhibited the less electrical conductivity gap, the larger thermal and electrical hysteresis, and the lower transition temperature than the increased nonstoichiometric one near transition. Infrared absorptions and X-ray observations indicated the local and overall lattice distortion in the nonstoichiometric crystal due to the existence of V5+ ions. Furthermore, an intermediate phase between the low-temperature monoclinic and the high-temperature tetragonal phases was found in the nonstoichiometric VO2. On the other hand, no evidence for this intermediate phase was found in the stoichiometric one. Finally, some comparisons and discussions of our present data with the previously published ones were made.  相似文献   

12.
Paramagnetic defects in α-WxV2O5 have been studied by ESR. A model is proposed where the unpaired electron arising from a valence induction effect remains localized on a single vanadium ion near the W6+ along the b direction. Introducing W6+ leads to a lattice distortion which is more important than that in the case of Mo6+. A slight displacement of vanadium along the a direction is observed in the defect, V4+ showing a stronger tendency toward octahedral coordination than V5+.  相似文献   

13.
The electronic tongue (ET) multisensor system has been employed for the detection of metal-oxygen cluster anions (polyoxometalates) containing vanadium (IV/V) atoms. Sensitivity of a variety of potentiometric chemical sensors with plasticized polyvinyl chloride and chalcogenide glass membranes was evaluated with respect to vanadyl/vanadate ions, decavanadate and a series of Keggin-type polyoxometalates (POM) such as α-[SiW11VIVO40]6−, α-[SiW11VVO40]5−, α-[BW11VIVO40]7−, α-[BW11VVO40]6−, α-[PW11VIVO40]5− and α-[PW12−nVnVO40](3+n)− (n = 1, 2, 3). Sensor's responses to vanadium complexes were evaluated in the pH range of 2.4-6.5 and a set of sensors appropriate for detecting a variety of vanadium species was selected. Such sensor array was able to distinguish different vanadium complexes allowing their simultaneous quantification in binary (V(IV)/V(V)) mixtures. The vanillyl alcohol oxidation with α-[SiW11VVO40]5− was monitored using ET to evaluate the capacity of proposed analytic system to detect simultaneously V(IV)/V(V) in POM under dynamic equilibrium. ET was demonstrated to be a promising tool for the discrimination and quantification of vanadium-containing POMs at different oxidation states. In particular, such a system could represent a significant interest for the mechanistic studies of redox reactions with POMs.  相似文献   

14.
Vanadium phosphate positive electrode materials attract great interest in the field of Alkali-ion (Li, Na and K-ion) batteries due to their ability to store several electrons per transition metal. These multi-electron reactions (from V2+ to V5+) combined with the high voltage of corresponding redox couples (e.g., 4.0 V vs. for V3+/V4+ in Na3V2(PO4)2F3) could allow the achievement the 1 kWh/kg milestone at the positive electrode level in Alkali-ion batteries. However, a massive divergence in the voltage reported for the V3+/V4+ and V4+/V5+ redox couples as a function of crystal structure is noticed. Moreover, vanadium phosphates that operate at high V3+/V4+ voltages are usually unable to reversibly exchange several electrons in a narrow enough voltage range. Here, through the review of redox mechanisms and structural evolutions upon electrochemical operation of selected widely studied materials, we identify the crystallographic origin of this trend: the distribution of PO4 groups around vanadium octahedra, that allows or prevents the formation of the vanadyl distortion (OV4+=O or OV5+=O). While the vanadyl entity massively lowers the voltage of the V3+/V4+ and V4+/V5+ couples, it considerably improves the reversibility of these redox reactions. Therefore, anionic substitutions, mainly O2− by F, have been identified as a strategy allowing for combining the beneficial effect of the vanadyl distortion on the reversibility with the high voltage of vanadium redox couples in fluorine rich environments.  相似文献   

15.
A new layered vanadium oxide [H3N(CH2)4NH3](V6O14) was synthesized hydrothermally under autogenous pressure at 180°C for 48 h from a mixture of H2N(CH2)4NH2 and V2O5 in aqueous solution. Its structure was determined from single-crystal X-ray diffraction at room temperature with final R=0.0774 and Rw=0.0893. It crystallizes in the monoclinic system (space group P21/n with a=9.74(2) Å, b=6.776(5) Å, c=12.60(2) Å, β=96.1(1)°, V=827(2) Å3 and Z=2). This compound contains mixed-valence V5+/V4+ vanadium oxide layers built from [VVO4] tetrahedra and pairs of edge-sharing [VIVO5] square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

16.
Mechanical activation (MA) of the LiOH+V2O5 and Li2CO3+V2O5 mixtures followed by brief heating at 673 K was used to prepare dispersed Li1+xV3O8. It was shown that structural transformations during MA are accompanied by reduction processes. EPR spectra of Li1+xV3O8 are attributed to vanadyl VO2+ ions with weak exchange interaction. The interaction of localized electrons (V4+ ions) with electron gas (delocalized electrons), which is exhibited through the dependence of EPR line width of vanadium ions versus measurement temperature (C–S–C relaxation), is revealed. It is shown that C–S–C relaxation is different for intermediate and final products. The properties of mechanochemically prepared Li1+xV3O8 are compared with those of HT-Li1+xV3O8, obtained by conventional solid state reaction. Mechanochemically prepared Li1+xV3O8 is characterized by a similar amount of vanadium ions, producing electron gas, but a higher specific surface area.  相似文献   

17.
Glasses of the composition XNa2O · 4Al2O3 (96-X) B2O3 (mole%) where X = 10, 20, 30 to which 0.03 g V2O5 per 100 g glass was added, were prepared by normal melting. Their absorption characteristics together with the corresponding V-free base glasses were determined before and after gamma irradiation. The characteristic spectra of the unirradiated glasses show absorption bands at 315, 470, 560–580, 610–650, 700–870, and 860–1000 nm, indicating the presence of vanadium ions in more than one oxidation state, viz, V5+, V4+, and V3+. Gamma irradation of V-containing glasses causes the formation of color centers in the glass matrices, with absorption bands at 330, 500, and 610 nm, and photoreduced [V3+] and [V2+] ions with absorption bands at 350–355 and 530–570 and 520 nm, respectively. Photoreduced [V4+] may also be formed, giving rise to absorptions at 690–700 and 750–800 nm. The induced vanadium ions are found to absorb at shorter wavelengths than the intrinsic ones. An explanation based on the difference in the field energy of the two states is given.  相似文献   

18.
A series of 1, 3, and 5% Bi-doped vanadium phosphate catalyst catalysts were prepared via sesquihydrate route using direct ultrasound method and were denoted as VPSB1, VPSB3, and VPSB5, respectively. These catalysts were synthesized solely using a direct ultrasound technique and calcined in a n-butane/air mixture. This study showed that catalyst synthesis time can be drastically reduced to only 2 hr compared to conventional 32–48 hr. All Bi-doped catalysts exhibited a well-crystallized (VO)2P2O7 phase. In addition, two V5+ phases, that is, β-VOPO4 and αII-VOPO4, were observed leading to an increase in the average oxidation state of vanadium. All catalysts showed V2p3/2 at approx. 517 eV, giving the vanadium oxidation state at approx. 4.3–4.6. Field-emission scanning electron microscopy micrographs showed the secondary structure consisting of thin and small plate-like crystal clusters due to the cavitation effect of ultrasound waves. VPSB5 showed the highest amount of oxygen species removed associated with the V5+ and V4+ species in temperature-programmed reduction in H2 analyses. TheX-ray absorption near edge structure (XANES) measurement showed the occurrence of vanadium oxide reductions in hydrogen gas flow, indicating the presence of V4+ and V5+ species. Higher average valence states of V5+, indicating more V5+ phases, were present. The addition of bismuth has increased the activity and selectivity to maleic anhydride.  相似文献   

19.
Two new monoclinic V2O4 phases were prepared at high pressure from the regular monoclinic (M1) form of V2O4. The unit cell dimensions for the unmodified monoclinic (M2) phase are: a = 9.083, b = 5.763, c = 4.532 Å, and β = 91.30°. The space group C 2m is consistent with the crystallographic data. The new vanadium dioxide exhibited a structural transition and an abrupt, reversible change in resistivity (approx. 4 orders of magnitude) at 66°C similar to that observed in M1-type V2O4. This new form of V2O4 is believed to be stabilized by chemical and structural defects. Controlled substitution of V5+ for V4+ in the structure led to yet another monoclinic (M3) phase. This phase is closely related to the M2 phase. The M3 unit cell dimensions are: a = 4.506, b = 2.899, c = 4.617 Å, and β = 91.79°, having the space group P 2m. The substitution of V3+ yielded only monoclinic (M1) derivatives. The modified products have varied semiconductor to metal transition temperatures which depend on the type and amount of substitution and defect structure.  相似文献   

20.
The new polyoxovanadate (POV) compound {[Cu(H2O)(C5H14N2)2]2[V16O38(Cl)]} · 4(C5H16N2) was synthesized under solvothermal conditions and crystallizes in the tetragonal space group I41/amd with a = 13.8679(6), c = 45.558(2) Å, V = 8761.7(7) Å3. The central structural motif is a {V16O38(Cl)} cluster constructed by condensation of 16 square‐pyramidal VO5 polyhedra. The cluster hosts a central Cl anion. According to valence bond sum calculations, chemical analysis and magnetic properties the cluster anion may be formulated as [V15IVVVO38(Cl)]12–, i.e., only one vanadium atom is not reduced. To the best of our knowledge this is the first reported {V16O38(X)} cluster in this VIV:VV ratio. The presence of the two different vanadium oxidation states is clearly seen in the IR spectrum. An unusual and hitherto never observed structural feature is the binding mode between the [Cu(H2O)(C5H14N2)2]2+ complexes and the [V15IVVVO38(Cl)]12– anion. The Cu2+ ion binds to a μ2‐O atom of the cluster anion whereas in all other transition metal complex‐augmented POVs bonding between the transition metal cation and the anion occurs through terminal oxygen atoms of the POV. The magnetic properties are dominated by strong antiferromagnetic exchange interactions between the V4+ d1 centers, whereas the Cu2+ d9 cations are magnetically decoupled from the cluster anion. Upon heating, the title compound decomposes in a complex fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号