首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dispersions of multiwalled carbon nanotubes (MWNT) in polypropylene (PP) were prepared via conventional melt batch mixing and solid‐state shear pulverization. The properties and structure of each system were assessed via linear viscoelasticity, electrical conductivity, PP crystallization kinetics, dynamic mechanical analysis, scanning electron microscopy, and small angle X‐ray scattering. Increasing either the duration or the intensity of melt mixing leads to higher degrees of dispersion of MWNT in PP, although at the cost of substantial melt degradation of PP for long mixing times. Samples prepared by pulverization exhibit faster crystallization kinetics and higher mechanical stiffness than the melt blended samples, but in contrast show no measurable low frequency elastic plateau in melt rheology, and lower electrical conductivity than melt‐mixed samples. X‐ray scattering demonstrates that neither sample has uniform dispersion down to the single MWNT level. The results illustrate that subtle differences in the size and distribution of nanotube clusters lead to differences in the nanotube networks with strong impact on bulk properties. The results also highlight distinctions between conductive networks and load transfer networks and demonstrate that a complete and comparative picture of dispersion cannot be determined by simple indirect property measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1426–1436, 2009  相似文献   

3.
Characterizing the physical properties of individual nanostructures is challenging because of the difficulty in manipulating the objects of sizes from nanometers to micrometers. Most nanomeasurements have been carried using scanning probe microscopy. In this article, we demonstrate that transmission electron microscopy can be a powerful tool for quantitative measurements of the mechanical and electrical properties of a single nanostructure. Dual-mode resonance of an oxide nanobelt has been observed, and its bending modulus has been measured. An in situ technique was demonstrated for measuring the work function at the tip of a carbon nanotube. The ballistic quantum conductance of a multiwalled carbon nanotube was observed at room temperature using the setup in TEM. It is concluded that in situ measurement by directly linking structure with property is a future direction of electron microscopy.  相似文献   

4.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

5.
采用在转矩流变仪中熔融混合的方法制备了聚甲醛(POM)/多壁碳纳米管(MWCNTs)/玻璃纤维(GF)和POM/炭黑(CB)/GF复合材料,研究了GF的加入对复合材料的导电性能、结晶行为和动态力学性能的影响.采用场发射扫描电镜(FESEM)观察了复合材料中导电填料的分散状态,发现GF的加入对MWCNTs和CB的分散状态没有明显影响.虽然GF为导电惰性填料,但因其加入起到了占位作用,明显提高了导电填料的有效浓度,从而使复合材料的体积电阻率明显降低.采用示差扫描量热仪(DSC)研究了复合材料中POM的结晶行为,发现GF的加入对POM的结晶温度、熔点和结晶度均无明显影响.采用动态机械分析仪(DMA)对复合材料的动态力学性能进行了研究,表明GF的加入能够明显地提高复合材料的储能模量.  相似文献   

6.
Changes in the thermogravimetrically determined oxidation behaviors of CVD-grown multiwalled carbon nanotubes with varying synthesis conditions are examined. Catalyst type and synthesis temperature are found to have a measurable impact upon nanotube stability, suggesting differing levels of crystalline perfection in the resulting nanotubes. The results provide evidence showing the catalytic effects of nanotube catalyst particles and their oxides upon the oxidation of nanotube carbon and graphite. The significance of thermogravimetric analysis as a characterization tool for carbon nanotubes is discussed.  相似文献   

7.
Well-dispersed multiwalled carbon nanotube (MWNT)/polystyrene composites have been prepared. Transmission and scanning electron microscopy were employed to observe the distribution of the MWNTs in the composites in a microscopic scale, indicating a nanotube network formed in the matrix. The dispersion of the nanotubes in the polymer was monitored by oscillatory rheology. It was found that the addition of MWNTs in the polymer had a drastic influence on the rheological behavior of the composites. As the MWNT loading increased, Newtonian behavior disappeared at low frequency, suggesting a transition from liquid-like to solid-like viscoelastic behavior. A more homogeneous dispersion or a greater loading of the nanotubes in the matrix produced stronger solid-like and nonterminal behavior, and the composites exhibited less temperature dependence at elevated temperature, compared to the matrix melt.  相似文献   

8.
The electrical impedance behavior of gellan gum (GG), GG–carbon nanotube, and GG–carbon nanofiber hydrogel composites is reported. It is demonstrated that the impedance behavior of these gels can be modeled using a Warburg element in series with a resistor. Sonolysis (required to disperse the carbon fillers) does not affect GG hydrogel electrical conductivity (1.2 ± 0.1 mS/cm), but has a detrimental effect on the gel's mechanical characteristics. It was found that the electrical conductivity (evaluated using impedance analysis) increases with increasing volume fraction of the carbon fillers and decreasing water content. For example, carbon nanotube containing hydrogels exhibited a six‐ to sevenfold increase in electrical conductivity (to 7 ± 2 mS/cm) at water content of 82%. It is demonstrated that at water content of 95 ± 2% the electrical behavior of multiwalled nanotube containing hydrogels transitions (percolates) from transport dominated by ions (owing to GG) to transport dominated by electrons (owing to the carbon nanotube network). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 864–871  相似文献   

9.
One-dimensional silicon-carbon nanotubes and nanowires of various shapes and structures were synthesized via the reaction of silicon (produced by disproportionation reaction of SiO) with multiwalled carbon nanotubes (as templates) at different temperatures. A new type of multiwalled silicon carbide nanotube (SiCNT), with 3.5-4.5 A interlayer spacings, was observed in addition to the previously known beta-SiC (cubic zinc blende structure) nanowires and the biaxial SiC-SiO(x) nanowires. The SiCNT was identified by high-resolution transmission microscopy (HRTEM), elemental mapping, and electron energy loss spectroscopy (EELS). The multiwalled SiCNT was found to transform to a beta-SiC crystalline structure by electron beam annealing under TEM.  相似文献   

10.
Polymer nanocomposites composed of poly(styrene‐ran‐vinyl phenol) (PSVPh) copolymers and 5 wt % multi‐walled carbon nanotubes (MWNTs) were prepared by three different methods, including melt‐mixing and precipitation. The MWNTs were either oxidized to incorporate oxygenated defects or utilized as received. The mechanical properties of the nanocomposites were measured by dynamic mechanical analysis (DMA), and the extent of intermolecular hydrogen bonding between MWNTs and PSVPh was quantified by infrared (IR). Our DMA results suggest that melt‐mixing leads to more stable morphologies of the final nanocomposites than precipitation. Additionally, the IR analysis of the nanocomposites indicates melt‐mixing can result in the formation of more intermolecular hydrogen bonding between the MWNTs and PSVPh than precipitation, and thus suggests that melt‐mixing leads to more reproducible mechanical properties than precipitation. Our DMA and IR results may provide guidelines to realize the desired morphologies and to improve the properties of polymer carbon nanotube nanocomposites by optimizing intermolecular interactions between MWNTs and polymers using processing. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1747–1759, 2008  相似文献   

11.
In this paper, we report the preparation and characterization (morphological, structural, surface, and electrochemical) of multiwalled carbon nanotube (MWCNT)/carbon xerogel (CX) electrodes prepared by mixing. This research proposes the hypothesis that the use of a hydrophilic binder (nafion) and the use of MWCNTs enhance electrode capacitance and conductivity. Electrochemical measurements in 2 M NaCl solution were performed. The advantage of adding multiwalled carbon nanotubes to the array of xerogel-nafion was studied through different electrochemical methods. It was validated that the greater carbon nanotube mesoporosity allows less compaction of the electrode, thus effectively increasing the specific area and therefore capacitance. Furthermore, we observed the increase in electronic conductivity reported in numerous studies, a fact that is true for iR drop measurement cycles in both galvanostatic charging and discharging. The carbon composite proved to be viable for energy storage.  相似文献   

12.
The effect of different concentrations of single‐walled carbon nanotubes (SWNTs) on the nonisothermal crystallization kinetics, morphology, and mechanical properties of polypropylene (PP) matrix composites obtained by melt compounding was investigated by means of X‐ray diffraction, differential scanning calorimetry, optical and scanning electron microscopy, and dynamic mechanical thermal analysis. Microscopy showed well‐dispersed nanotube ropes together with small and large aggregates. The modulus was found to increase by about 75% at a level of 0.5 wt % nanotubes. The SWNTs displayed a clear nucleating effect on the PP crystallization, favoring the α crystalline form rather than the β form. The crystallization kinetics analysis showed a significant increase in activation energy on incorporating nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2445–2453, 2005  相似文献   

13.
Electrically conducting copolymer poly(aniline-co-p-phenylenediamine) and carboxylic acid functionalized multiwalled carbon nanotube (c-MWCNT) nancomposites were prepared via in situ emulsion polymerization using sodium dodecyl sulfate as an emulsifier and potassium persulfate as an oxidant. STEM and FESEM analyses showed that a tubular layer of coated copolymer film of several nanometer thicknesses was present on the c-MWCNT's surface. FT-IR spectra were endorsed the formation of nanocomposites. UV-visible absorption spectra of the diluted colloidal dispersion of nanocomposites were similar to those of the bare copolymer. Thermal stability of nanocomposites was improved by the addition of c-MWCNTs. XRD patterns of the nanocomposite samples had more crystalline nature than the bare copolymer. As the content of c-MWCNTs was increased, the electrical conductivity was increased by a charge transport function from the intrinsic electrical conductivity of MWCNTs and the formation of a highly ordered dense structure of copolymer molecules on the surface of c-MWCNTs.  相似文献   

14.
We present a rigorous investigation on elution behaviors of ultrasonically shortened multiwalled carbon nanotubes in size‐exclusion chromatography. The size separation of five carbon nanotube samples that underwent ultrasonic shortening for varying lengths of time revealed the existence of three kinds of carbon species: large nanotubes, small nanotubes, and amorphous carbon species. Separation of the three different carbon species was confirmed by SEM analyses on the fractionated eluates and also by light scattering/UV absorbance double detection. The chromatographic peak intensity ratio between the large and small nanotubes suggested an increased amount of small carbon nanotubes upon longer mechanical treatment time. The effect of the concentration of carbon nanotube dispersion on elution behavior was examined, and the elution volume of the shortened nanotubes was found to decrease upon dilution while that of the large nanotubes showed the opposite tendency. Unusual elution behaviors of the multiwalled carbon nanotubes were also observed by altering the flow rate, and these behaviors could be explained by the longer equilibration time taken for large nanotubes to access the pores of the packing materials and a possible morphology change of small carbon nanotubes.  相似文献   

15.
Polymer nanocomposites based on a very small quantity of carbon nanotube (CNT) and thermotropic liquid crystal polymer (TLCP) were prepared by simple melt blending using a twin-screw extruder. Morphological observations revealed that modified CNT was uniformly dispersed in the TLCP matrix and increased interfacial adhesion between the nanotubes and the polymer matrix. The enhancement of the storage and loss moduli of the TLCP nanocomposites with the introduction of CNT was more pronounced at low frequency region, and non-terminal behavior observed in the TLCP nanocomposites resulted from the nanotube-nanotube and polymer-nanotubes interactions. There is significant dependence of the mechanical, rheological, and thermal properties of the TLCP nanocomposites on the uniform dispersion of CNT and the interfacial adhesion between CNT and TLCP matrix, and their synergistic effect was more effective at low CNT content than at high CNT content. The key to improve the overall properties of the TLCP nanocomposites depends on the optimization of the unique geometry and dispersion state of CNT and the interfacial interactions in the TLCP nanocomposites during melt processing. This study demonstrate that a very small quantity of CNT substantially improved thermal stability and mechanical properties of the TLCP nanocomposites, providing a design guide of CNT-filled TLCP composites with as great potential for industrial use.  相似文献   

16.
采用正电子湮没寿命谱技术研究了尼龙6/碳纳米管纳米复合材料的自由体积特性。实验结果发现碳纳米管对纳米复合材料的自由体积孔洞尺寸影响甚微,而自由体积孔洞数目和相对自由体积分数均随碳纳米管含量的增加而明显减小。导致这种减小的原因可能来自两方面,其一是由于碳纳米管和基质聚合物间的相互作用限制了高分子链段运动;其二是碳纳米管填充增强了尼龙6基体结晶性能。此外,力学性能研究表明,碳纳米管在复合材料中较均匀的分散和较好的界面接触可以提高材料的力学强度,而自由体积分数的减小则使材料的韧性变差。  相似文献   

17.
Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors   总被引:2,自引:0,他引:2  
Synthesis of Bi2S3 nanotubes from rolling of the quasi-two-dimensional (2-D) layered precursor represents new progress in the synthetic approach and adds new members to the present inorganic fullerene family. These nanotubes display multiwalled structures that resemble that of a multiwalled carbon nanotube. The successful synthesis of Bi2S3 nanotubes highlights the feasibility of inorganic fullerene-like structures from other chemicals that possess layered crystalline structures, not only the well-known 2-D family, but possibly also those quasi-2-D members.  相似文献   

18.
Covalent attachment of a non-fluorinated polyetherimide onto the surface of carboxylic acid-functionalized multiwalled carbon nanotubes (MWNTs) has been achieved via grafting reactions. This confirms for the first time that the grafting reaction occurs at the nanotube surface when the carboxylic acid-functionalized MWNTs react with the polyetherimide with amine-terminated groups, through both amide and imide linkages formed at the interface between the carbon nanotubes and the polyetherimide. Additionally, an increase in the average molecular weight is detected in gel permeation chromatography when the polyetherimide is chemically attached onto the nanotubes. More interestingly, the chemical bonding at the interface provides much better interfacial adhesion and mechanical stress transfer, evidenced by a significant improvement in mechanical properties. As a result of the chemical attachment, the carbon nanotube-reinforced polyetherimide composite films have enhanced electrical conductivity, thermal deformation temperatures, and mechanical properties.  相似文献   

19.
This study was aimed to prepare biodegradable and porous nanocomposite scaffolds with microtubular orientation structure as a model for nerve tissue engineering by thermally induced phase separation (TIPS) method using dioxane as the solvent, crystalline poly (L‐lactic acid) (PLLA) and multi‐walled carbon nanotubes (MWCNTs). In order to overcome dispersion of MWCNTs in the PLLA matrix, heparinization of MWCNTs was performed. Solvent crystallization, oriented structure, the mean pore diameter and porosity percentage of the scaffolds were controlled by fundamental system parameters including temperature‐gradient of the system, polymer solution concentration and carbon nanotube content. Scanning Electron Microscopy (SEM), ImageJ, software and dynamic mechanical thermal analysis (DMTA) were used to investigate the structural and mechanical properties. TEM observation was carried out for characterization of nanotube dispersion in PLLA. It was found that the scaffolds containing heparinized multi‐walled carbon nanotubes (HMWCNTs) exhibited higher storage modulus, better carbon nanotube (CNT) dispersion and tubular orientation structure than those with non heparinized MWCNTs. In‐vitro studies were also conducted by using murine P19 cell line as a suitable model system to analyze neuronal differentiation over a 2‐week period. Immunofluorescence and DAPI staining were used to confirm the cells' attachment and differentiation on the PLLA/HMWCNT nanocomposite scaffolds. Based on the results, we can conclude that the PLLA/HMWCNT scaffolds enhanced the nerve cell differentiation and proliferation, and therefore, acted as a positive cue to support neurite outgrowth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Gu F  Li C  Wang S 《Inorganic chemistry》2007,46(13):5343-5348
A facile solution-chemical method has been developed to be capable of encapsulating a multiwalled carbon nanotube (MWCNT) with ZnS nanocrystals without using any bridging species. The thickness of the ZnS shell can be tuned easily by controlling the experimental conditions. The optical properties of the MWCNT/ZnS heterostructures were investigated using UV-vis absorption and photoluminescence spectroscopy. The optical absorption spectrum indicates that the band gap of ZnS nanocrystallites is 4.2 eV. On the basis of the photoluminescence spectrum, charge transfer is thought to proceed from ZnS nanocrystals to the nanotube in the ZnS-carbon nanotube system. These special heterostructures are very easily encapsulated within a uniform silica layer by a modified-St?ber process and still show better stability even after heat treatment at 400 degrees C, which makes them appealing for practical applications in biochemistry and biodiagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号