首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermo‐mechanically durable industrial polymer nanocomposites have great demand as structural components. In this work, highly competent filler design is processed via nano‐modified of micronic SiO2/Al2O3 particulate ceramics and studied its influence on the rheology, glass transition temperature, composite microstructure, thermal conductivity, mechanical strength, micro hardness, and tribology properties. Composites were fabricated with different proportions of nano‐modified micro‐composite fillers in epoxy matrix at as much possible filler loadings. Results revealed that nano‐modified SiO2/Al2O3 micro‐composite fillers enhanced inter‐particle network and offer benefits like homogeneous microstructures and increased thermal conductivity. Epoxy composites attained thermal conductivity of 0.8 W/mK at 46% filler loading. Mechanical strength and bulk hardness were reached to higher values on the incorporation of nano‐modified fillers. Tribology study revealed an increased specific wear rate and decreased friction coefficient in such fillers. The study is significant in a way that the design of nano‐modified mixed‐matrix micro‐composite fillers are effective where a high loading is much easier, which is critical for achieving desired thermal and mechanical properties for any engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Novel epoxy nanocomposites based on a diglycidyl ether of bisphenol A (DGEBA) epoxy, an epoxy functionalized hyperbranched polymer (HTTE) and nano‐Al2O3 were synthesized with the aim of determining the effect of the nano‐Al2O3 particles and HTTE on the structure and properties of epoxy nanocomposites. The mechanical properties, thermal conductivity, bulk resistivity, and thermal stability of the nano‐Al2O3/HTTE/DGEBA ternary composites were evaluated and compared with the corresponding matrix. The improvement in impact properties of these nanocomposites was explained in terms of fracture surface analysis by SEM. The results indicate that the incorporation of nanoparticles and hyperbranched epoxy effectively improved the toughness of epoxy composites without sacrificing thermal conductivity and bulk resistivity compared to the neat epoxy and Al2O3/DGEBA, obtaining a well dispersion of nanoparticles in epoxy matrix and solving the drawbacks for single fillers filled epoxy nanocomposite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This current study aimed to enhance the thermal conductivity of thin film composites without compromising other polymer qualities. The effect of adding high thermal conductivity nanoparticles on the thermal properties and moisture absorption of thin film epoxy composites was investigated. Three types of fillers in nanosize with high thermal conductivity properties, boron nitride (BN), synthetic diamond (SD), and silicon nitride (Si3N4) were studied. SN was later used as an abbreviation for Si3N4. The contents of fillers varied between 0 and 2 vol.%. An epoxy nanocomposite solution filled with high thermal conductivity fillers was spun at 1500–2000 rpm to produce thin film 40–60 µm thick. The effects of the fillers on thermal properties and moisture absorption were studied. The addition of 2 vol.% SD produced the largest improvement with 78% increment in thermal conductivity compared with the unfilled epoxy. SD‐filled epoxy thin film also showed good thermal stability with the lowest coefficients of thermal expansion, 19 and 124 ppm, before and after Tg, respectively, which are much lower compared with SN‐filled and BN‐filled epoxy thin film composites. However the SD‐filled epoxy film has its drawback as it absorbs more moisture compared with BN‐filled and SN‐filled epoxy film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Cerium oxide‐filled high density polyethylene (HDPE) composites for microwave substrate applications were prepared by sigma‐blend technique. The HDPE was used as the matrix and the dispersion of CeO2 in the composite was varied up to 0.5 by volume fraction, and the dielectric properties were studied at 1 MHz and microwave frequencies. The variations of thermal conductivity (keff), coefficient of thermal expansion (αc) and Vicker's microhardness with the volume fraction of the filler were also measured. The relative permittivity (εeff) and dielectric loss (tan δ) were found to increase with increase in CeO2 content. For 0.4 volume fraction loading of the ceramic, the composite had εeff = 5.7, tan δ = 0.0068 (at 7 GHz), keff = 2.6 W/m °C, αc = 98.5 ppm/°C, Vicker's microhardness of 18 kg/mm2 and tensile strength of 14.6 MPa. Different theoretical approaches have been used to predict the effective permittivity, thermal conductivity, and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 998–1008, 2010  相似文献   

5.
In this paper, nanoalumina (Al2O3) highly filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated systemically through various characterization methods. Furthermore, influences of in situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent bis‐(3‐triethoxy silylpropyl)‐tetrasulfide (Si69) and stearic acid (SA) pretreatment on the nano‐Al2O3 filled composites are as well investigated. The results indicate that nano‐Al2O3 particles can not only perform well in reinforcing EPDM, but also improve the thermal conductivity significantly. Assisted by in situ modification with Si69, the mechanical properties (especially dynamic mechanical properties) of the nano‐Al2O3 filled composites are improved obviously, without influencing the thermal conductivity. By comparing to the traditional reinforcing fillers, such as carbon black (grade N330) and silica, in situ modified nano‐Al2O3 filled composites exhibit excellent performance in mechanical (static and dynamic) properties as well as better thermal conductivity, especially lower compression heat build‐up and better fatigue resistance. In general, our work indicates that nano‐Al2O3, as the novel thermal conductive reinforcing filler, is suitable to prepare rubber products serving in dynamic conditions, with the longer expected service life. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
《先进技术聚合物》2018,29(6):1568-1585
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.  相似文献   

7.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

8.
New organic‐inorganic hybrid materials and their anti‐electrostatic hybrid membranes are prepared via sol‐gel process. The polycondensation of epoxy oligomers and AEAPS/Al2O3 complexes which are organically surface modified submicrometer aluminum trihydroxide inorganic fillers with an active aminoterminal silane coupling agent, N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AEAPS), are performed. AEAPS enhances the interfacial interactions between the inorganic fillers and epoxy polymers. Meanwhile, this coupling agent maintains well dispersion of fillers in these composites. To improve the mechanical strength and thermal stability, pyromellitic dianhydride (PMDA) is used as curing agent. These hybrid films prepared from this method have excellent physical properties, such as UV‐shielding, high transmission in visible resign (> 85%), high hardness (7~8H) , high adhesive force (7~8) and low relative surface resistance (9.71 × 1011~1.26 × 1010 Ω/cm2) with anti‐electrostatic characters. For thermal resistance, the best Td value of epoxy/PMDA/AEAPS/Al2O3 is 378.6 °C which is 85.4 °C higher than that of neat epoxy resin. Physical properties of these materials are almost the same as those of the nanocomposites prepared from expensive colloid Al2O3. Evidences from TEM micrograph show that the inorganic additives are dispersed evenly in organic matrix with nanometer scale.  相似文献   

9.
《先进技术聚合物》2018,29(2):896-905
The tribological characteristics of PEEK composites fretting against GCr 15 steel were investigated by a SRV‐IV oscillating reciprocating ball‐on‐disk tribometer. In order to clarify the effect of type and size of fillers on the properties of PEEK composites, nano‐sized and micro‐sized CF and PTFE fillers were added to the PEEK matrix. The thermal conductivity, hardness, and fretting wear properties of PEEK composites reinforced by CF or PTFE were comparatively studied. The results showed that the type and size of the fillers have an important effect on both the friction coefficient and wear rate, by affecting their thermal conductivity, hardness, as well as the surface areas of their transfer films. In comparison, the effect on improving the tribological properties of micro‐sized CF was superior to that of nano‐sized CF, while the effect of nano‐sized PTFE was superior to that of micro‐sized PTFE. Considering the acceptable friction coefficient and wear rate of the composite under the fretting wear test, it seemed that 4% nCF, 20% mCF, 2% nPTFE and 10% mPTFE were desired additive proportions. And it also can be found that during the fretting wear test, the abrasive and adhesive wear resulted in accumulative debris at the contacting surface. The transfer films made of debris were formed on the counterfaces.  相似文献   

10.
Epoxy composites containing particulate fillers‐fused silica, glass powder, and mineral silica were investigated to be used as substrate materials in electronic packaging application. The content of fillers were varied between 0 and 40 vol%. The effects of the fillers on the thermal properties—thermal stability, thermal expansion and dynamic mechanical properties of the epoxy composites were studied, and it was found that fused silica, glass powder, and mineral silica increase the thermal stability and dynamic thermal mechanical properties and reduce the coefficient of thermal expansion (CTE). The lowest CTE value was observed at a fused silica content of 40 vol% for the epoxy composites, which was traced to the effect of its nature of low intrinsic CTE value of the fillers. The mechanical properties of the epoxy composites were determined in both flexural and single‐edge notch (SEN‐T) fracture toughness properties. Highest flexural strength, stiffness, and toughness values were observed at fillers content of 40 vol% for all the filled epoxy composites. Scanning electron microscopy (SEM) micrograph showed poor filler–matrix interaction in glass powder filled epoxy composites at 40 vol%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A Haake torque rheometer equipped with an internal mixer has been used to study the influence of microscale calcium carbonate (micro‐CaCO3) and nanoscale calcium carbonate (nano‐CaCO3) on the fusion, thermal, and mechanical characteristics of rigid poly(vinyl chloride) (PVC)/micro‐CaCO3 and PVC/nano‐CaCO3 composites, respectively. The fusion characteristics discussed in this article include the fusion time, fusion temperature, fusion torque, and fusion percolation threshold (FPT). The fusion time, fusion temperature, and FPT of rigid PVC/calcium carbonate (CaCO3) composites increase with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. In contrast, the fusion torque of rigid PVC/CaCO3 composites decreases with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. The results of thermal analysis show that the first thermal degradation onset temperature (Tonset) of rigid PVC/micro‐CaCO3 is 7.5 °C lower than that of PVC. Meanwhile, the glass‐transition temperature (Tg) of rigid PVC/micro‐CaCO3 is similar to that of PVC. However, Tonset and Tg of PVC/nano‐CaCO3 composites can be increased by up to 30 and 4.4%, respectively, via blending with 10 phr nano‐CaCO3. Mechanical testing results for PVC/micro‐CaCO3 composites with the addition of 5–15 phr micro‐CaCO3 and PVC/nano‐CaCO3 composites with the addition of 5–20 phr nano‐CaCO3 are better than those of PVC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 451–460, 2006  相似文献   

12.
DOPO and boron nitride (BN) fillers with different particle sizes and several loadings were employed to improve the properties of cyanate ester (CE) resin. The effects of BN content and particle size on the thermal conductivity of the BN‐DOPO/CE ternary composites were discussed. The influence of enhancing the thermal conductivity of the ternary composites on their flame retardancy was studied. The consequences showed that increasing the thermal conductivity of BN‐DOPO/CE composites had an active impact on their flame retardancy. Approving flame retardancy of the ternary composites was certified by the high limiting oxygen index (LOI), UL‐94 rating of V‐0, and low heat release rate (HRR) and total heat release (THR). For instance, in contrast with pure CE matrix, peak of HRR (pk‐HRR), average of HRR (av‐HRR), THR, and average of effective heat of combustion (av‐EHC) of CEP/BN0.5 μm/10 composite were decreased by 51.7%, 33.8%, 18.7%, and 18.9%, respectively. Thermal gravimetry analysis (TGA) showed that the addition of BN fillers improves the thermal stability of the composites. Moreover, the ternary composites possess good dielectric properties. Their dielectric constants (ε) are less than 3, and dielectric loss tangent (tgδ) values are lower than neat CE resin.  相似文献   

13.
Boron nitride (BN) micro particles modified by silane coupling agent, γ‐aminopropyl triethoxy silane (KH550), are employed to prepare BN/epoxy resin (EP) thermal conductivity composites. The thermal conductivity coefficient of the composites with 60% mass fraction of modified BN is 1.052 W/mK, five times higher than that of native EP (0.202 W/mK). The mechanical properties of the composites are optimal with 10 wt% BN. The thermal decomposition temperature, dielectric constant, and dielectric loss increase with the addition of BN. For a given BN loading, the surface modification of BN by KH550 exhibits a positive effect on the thermal conductivity and mechanical properties of the BN/EP composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In order to enhance dielectric properties and energy storage density of poly(vinylidene fluoride‐hexafluoro propylene) (PVDF‐HFP), surface charged gas‐phase Al2O3 nanoparticles (GP‐Al2O3, with positive surface charges, ε’ ≈ 10) are selected as fillers to fabricate PVDF‐HFP‐based composites via simple physical blending and hot‐molding techniques. The results show that GP‐Al2O3 are dispersed homogeneously in the PVDF‐HFP matrix and the existence of nanoscale interface layer (matrix‐filler) is investigated by SAXS. The dielectric constant of the composites filled with 10 wt % GP‐Al2O3 is 100.5 at 1 Hz, which is 5.6 times higher than that of pure PVDF‐HFP. The maximum energy storage density of the composite is 4.06 J cm?3 at an electrical field of 900 kV mm?1 with GP‐Al2O3 content of 1 wt %. Experimental results show that GP‐Al2O3 could induce uniform fillers’ distribution and increase the concentration of electroactive β‐phase as well as enhance interfacial polarization in the matrix, which resulted in enhancements of dielectric constant and energy storage density of the PVDF‐HFP composites. This work demonstrates that surface charged inorganic‐oxide nanoparticles exhibit promising potential in fabricating ferroelectric polymer composites with relatively high dielectric constant and energy storage. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 574–583  相似文献   

15.
Nanomaterials based on zirconium tungstate (ZrW2O8) exhibit numerous outstanding properties that make them ideal candidates for the development of high‐performance composites. Low coefficient of thermal expansion for advanced materials is a promising direction in the field of insulating nanocomposites. However, the agglomeration of zirconium tungstate (ZrW2O8)‐based nanomaterials in the polymer matrix is a limiting factor in their successful applications, and studies on surface functionalization ZrW2O8 for advanced nanocomposites are very limited. In this work, ZrW2O8 nano‐rods were synthesized using a hydrothermal method and subsequently functionalized in a solvent‐free aqueous medium using dopamine. Both pristine and functionalized nano‐rods were thoroughly characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X‐ray diffraction, Scanning Electron Microscopy (SEM), and transmission electron microscopy techniques, which confirmed the successful functionalization of the nanomaterials. Polymer nanocomposites were also prepared using epoxy resin as a model matrix. Polymer nanocomposites with functionalized ZrW2O8 nano‐rods exhibited low coefficient of thermal expansion and enhanced tensile properties. The improved properties of the nanocomposites render them suitable for electronic applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
《中国化学会会志》2017,64(4):427-433
In this study, a carbon‐controllable hierarchical micro/mesoporous carbon–silica material derived from agricultural waste rice husk was easily synthesized and utilized as filler in an epoxy matrix for electronic packaging applications. Scanning electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherms were used to characterize the morphology, thermal stability, carbon content, and porous structural properties, respectively, of the as‐obtained carbon–silica material, namely rice husk char (RHC ). As a filler material, the uniformly dispersed RHC filler in the epoxy/RHC composite was easily prepared through hydrogen bonding of the silanol group of silica with the epoxy matrix. For electronic packaging applications, the thermal conductivity and thermomechanical properties (storage modulus and coefficient of thermal expansion) of the epoxy/RHC composites improved with increasing carbon content. Moreover, loading of the 40% RHC filler substantially enhanced the storage modulus of the epoxy/RHC composite (5735 MPa ) compared to the epoxy with 40% commercial silica filler (3681 MPa ). Considerable commercial potential is expected for the carbon–silica composite because of the simple synthesis process and outstanding performance of the prepared packaging material.  相似文献   

17.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

18.
High‐performance insulating materials have been increasingly demanded by many cutting‐edge fields. A new kind of high‐performance composites with high thermal conductivity, low coefficient of thermal expansion (CTE), and low dielectric loss was successfully developed, consisting of hexagonal boron nitride (hBN) and 2,2′‐diallylbisphenol A (DBA)‐modified 4,4′‐bismaleimidodiphenylmethane (BDM) resin. The effects of hBN and its content on the integrated properties, including curing behavior of uncured system, the CTE, thermal conductivity, dielectric properties, and thermal resistance of cured composites, are systematically investigated and discussed. Results show that there are amino groups on the surface of hBN, which supply desirable interfacial adhesion between hBN and BDM/DBA resin and a good dispersion of hBN in the resin. With the increase of the hBN content, the thermal conductivity increases linearly, whereas the CTE value decreases linearly; in addition, dielectric loss gradually decreases and becomes more stable over the whole frequency from 10 to 109 Hz. In the case of the composite with 35 wt% hBN, its thermal conductivity, CTE in glassy state, and dielectric loss are about 3.3, 0.63, and 0.5 times of the corresponding value of BDM/DBA resin, respectively. These attractive integrated properties suggest that hBN/BDM/DBA composites are high‐performance insulating materials, which show great potential in applications, especially for electronics and aerospace industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Composites based on conductive organic/inorganic fillers dispersed in insulating matrix have been widely investigated because of their widespread applications such as electromagnetic shielding, electrostatic discharge, and sensors. In this context, novel composite materials based on epoxy resin matrix charged with polyaniline (PANI)‐doped para‐toluene sulfonic acid were elaborated. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to check the structure and the morphology of the samples. Viscoelastic behavior and thermal stability of the composites were explored by dynamic mechanical thermal analysis and thermogravimetric analysis. It was shown that the PANI particles exhibited a partial crystalline structure and were homogeneously dispersed in epoxy matrix. Consequently, this structure affected the thermal stability and viscoelastic properties of the composites. Furthermore, the dielectric and electrical properties were investigated up to 1 MHz. Measurements of dielectric properties revealed that with loading fillers in matrix, the dielectric parameters increased to high values at low frequency then decreased at values around 40 and 32 of real and imaginary parts, respectively, at 1 MHz with 15% of PANI content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Two liquid crystalline epoxies containing biphenyl ether and aromatic ester mesogenic units, oxybis(4,1-phenylene)bis(4-(oxiran-2-ylmethoxy)benzoate)(LCE1) and oxybis(4,1-phenylene) bis(4-(4-(oxiran-2-yl)butoxy)benzoate)(LCE2), were synthesized and characterized. Subsequently, the epoxy monomers were cured with diaminodiphenylsulfone (DDS). From DSC, XRD and POM results, monomers did not show liquid crystalline phase while the cured samples exhibited nematic phase. The cured samples showed good mechanical properties with strength of 99.1MPa and excellent thermal stabilities with high glass transition temperature up to 168.0?°C, 5% weight loss temperature at 343?°C and high char yield of 24.5% at 800?°C. The relationship between thermal conductivity and network structure was discussed in this work. Due to the introduction of mesogenic units into epoxy networks, the cured resins showed high thermal conductivity as high as 0.292?W/(m*K), more than 1.5times higher than conventional epoxy resins. By introducing alumina (Al2O3) into LCE1/DDS cured system, composites of LCE1/DDS/Al2O3 with the highest thermal conductivity of 1.61?W/(m*K) was obtained with the content of 80?wt% while that of diglycidyl ether of bisphenol A (DGEBA, E51) epoxy resin/DDS/Al2O3 was 1.10?W/(m*K). The as-prepared epoxy resins showed high glass transition temperature and excellent thermal stabilities, indicating the potential of application in microelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号