首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study analytically a black-hole-ring system which is composed of a stationary axisymmetric ring of particles in orbit around a perturbed Kerr black hole of mass $M$ . In particular, we calculate the shift in the orbital frequency of the innermost stable circular orbit (ISCO) due to the finite mass $m$ of the orbiting ring. It is shown that for thin rings of half-thickness $r\ll M$ , the dominant finite-mass correction to the characteristic ISCO frequency stems from the self-gravitational potential energy of the ring (a term in the energy budget of the system which is quadratic in the mass $m$ of the ring). This dominant correction to the ISCO frequency is of order $O(\mu \ln (M/r))$ , where $\mu \equiv m/M$ is the dimensionless mass of the ring. We show that the ISCO frequency increases (as compared to the ISCO frequency of an orbiting test-ring) due to the finite-mass effects of the self-gravitating ring.  相似文献   

2.
We consider a non-interacting bipartite quantum system $\mathcal H_S^A\otimes \mathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independent quantum systems interacting one after the other with the bipartite system. The interactions are made so that the pieces of environment interact first with $\mathcal H_S^A$ and then with $\mathcal H_S^B$ . Even though the bipartite systems are not interacting, the interactions with the environment create an entanglement. We show that, in the limit of short interaction times, the environment creates an effective interaction Hamiltonian between the two systems. This interaction Hamiltonian is explicitly computed and we show that it keeps track of the order of the successive interactions with $\mathcal H_S^A$ and $\mathcal H_S^B$ . Particular physical models are studied, where the evolution of the entanglement can be explicitly computed. We also show the property of return of equilibrium and thermalization for a family of examples.  相似文献   

3.
The chiral superfield model associated with the low-energy limit of superstring theory and characterized by the Kähler and the chiral potential [K(Φ, $\overline \Phi$ ) and W(Φ), respectively] is analyzed. An approach to solving a general problem is developed, and quantum loop corrections at arbitrary K(Φ, $\overline \Phi$ ) and W(Φ) are found. Various aspects of a supergraph technique that are associated with calculating perturbative contributions to the superfield effective action are analyzed. Explicit expressions for the one-and two-loop corrections to the Kähler potential are calculated. The leading two-loop correction to the chiral potential is obtained, and it is shown that, irrespective of the form of K(Φ, $\overline \Phi$ ) and W(Φ), counterterms are not needed for deducing this correction.  相似文献   

4.
5.
We develop quantum mechanical Dirac ket-bra operator’s integration theory in $\mathfrak{Q}$ -ordering or $\mathfrak{P}$ -ordering to multimode case, where $\mathfrak{Q}$ -ordering means all Qs are to the left of all Ps and $\mathfrak{P}$ -ordering means all Ps are to the left of all Qs. As their applications, we derive $\mathfrak{Q}$ -ordered and $\mathfrak{P}$ -ordered expansion formulas of multimode exponential operator $e^{ - iP_l \Lambda _{lk} Q_k } $ . Application of the new formula in finding new general squeezing operators is demonstrated. The general exponential operator for coordinate representation transformation $\left| {\left. {\left( {_{q_2 }^{q_1 } } \right)} \right\rangle \to } \right|\left. {\left( {_{CD}^{AB} } \right)\left( {_{q_2 }^{q_1 } } \right)} \right\rangle $ is also derived. In this way, much more correpondence relations between classical coordinate transformations and their quantum mechanical images can be revealed.  相似文献   

6.
A. L. Kataev 《JETP Letters》1997,66(5):327-330
Analytical expressions are presented for contributions of order $O(\overline \alpha \overline \alpha _s )$ and $O(\overline \alpha ^2 )$ to the $\bar bb$ -decay width of the neutral Higgs boson of the standard model of electroweak interactions. The numerical value of the mixed QED and QCD correction of order $O(\overline \alpha \overline \alpha _s )$ is comparable to other computed terms in the perturbation series.  相似文献   

7.
Spectroscopies of the heavy quarkonia, \(c\bar c\) , \(b\bar b\) and \(t\bar t\) , are analysed with a potential model. Relativistic effects are taken into account and spin dependent interactions are investigated in detail. We propose a flavor independent potential which has a Lorentz vector term determined by the perturbative QCD at short distances and a Lorentz scalar term confining quarks at large distances. It is stressed that the short range attenuation of the vector Coulomb potential has significant effects on the fine and hyperfine structures of the \(c\bar c\) and \(b\bar b\) systems, and also on the \(t\bar t\) level structure. We study the decay property of the \(t\bar t\) system using the calculated wave functions.  相似文献   

8.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

9.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

10.
We study the photoproduction of the charged top-pion predicted by the top triangle moose (TTM) model (a deconstructed version of the topcolor-assisted technicolor TC2 model) via the processes $pp\rightarrow p \gamma p \rightarrow \pi ^\pm _t t +X$ at the 14 TeV Large Hadron Collider (LHC) including next-to-leading order (NLO) QCD corrections. Our results show that the production cross sections and distributions are sensitive to the free parameters $\sin \omega $ and $M_{\pi _t}$ . A typical QCD correction value is $7{-}11~\%$ and this does not depend much on $\sin \omega $ as well as the forward detector acceptances.  相似文献   

11.
12.
The effects of a running gravitational coupling and the entropic force on future singularities are considered. Although it is expected that the quantum corrections remove the future singularities or change the singularity type, treating the running gravitational coupling as a function of energy density is found to cause no change in the type of singularity but causes a delay in the time that a singularity occurs. The entropic force is found to replaces the singularity type $II\, \hbox {by} \overline{III} (a=\hbox {const.}, H=\hbox {const.}, \dot{H} \rightarrow \infty , p \rightarrow \infty , \rho \rightarrow \infty )$ which differs from previously known type $III$ and to remove the $w$ -singularity. We also consider an effective cosmological model and show that the types $I$ and $II$ are replaced by the singularity type $III$ .  相似文献   

13.
We study radiative corrections to massless quantum electrodynamics modified by two dimension-five LV interactions $\bar{\Psi } \gamma ^{\mu } b'^{\nu } F_{\mu \nu }\Psi $ and $\bar{\Psi }\gamma ^{\mu }b^{\nu } \tilde{F}_{\mu \nu } \Psi $ in the framework of effective field theories. All divergent one-particle-irreducible Feynman diagrams are calculated at one-loop order and several related issues are discussed. It is found that massless quantum electrodynamics modified by the interaction $\bar{\Psi } \gamma ^{\mu } b'^{\nu } F_{\mu \nu }\Psi $ alone is one-loop renormalizable and the result can be understood on the grounds of symmetry. In this context the one-loop Lorentz-violating beta function is derived and the corresponding running coefficients are obtained.  相似文献   

14.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

15.
One kind of generalized measures called quantum measures on finite effect algebras, which fulfil the grade-2 additive sum rule, is considered. One basis of vector space of quantum measures on a finite effect algebra with the Riesz decomposition property (RDP for short) is given. It is proved that any diagonally positive symmetric signed measure \(\lambda \) on the tensor product \(E\otimes E\) can determine a quantum measure \(\mu \) on a finite effect algebra \(E\) with the RDP such that \(\mu (x)=\lambda (x\otimes x)\) for any \(x\in E\) . Furthermore, some conditions for a grade-2 additive measure \(\mu \) on a finite effect algebra \(E\) are provided to guarantee that there exists a unique diagonally positive symmetric signed measure \(\lambda \) on \(E\otimes E\) such that \(\mu (x)=\lambda (x\otimes x)\) for any \(x\in E\) . At last, it is showed that any grade- \(t\) quantum measure on a finite effect algebra \(E\) with the RDP is essentially established by the values on a subset of \(E\) .  相似文献   

16.
The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .  相似文献   

17.
We consider a mixture of metal-coated quantum dots dispersed in a polymer matrix and, using a modified version of the standard Maxwell-Garnett mixing rule, we prove that the mixture parameters (particles radius, quantum dots gain, etc.) can be chosen so that the effective medium permittivity has an absolute value very close to zero in the near-infrared, i.e. $|{\rm Re}(\epsilon)| \ll 1$ and $|{\rm Im}(\epsilon)| \ll 1$ at the same near-infrared wavelength. Resorting to full-wave simulations, we investigate the accuracy of the effective medium predictions and we relate their discrepancy with rigorous numerical results to the fact that $|\epsilon| \ll 1$ is a critical requirement. We show that a simple method for reducing this discrepancy, and hence for achieving a prescribed and very small value of $|\epsilon|, $ consists in a subsequent fine-tuning of the nanoparticles volume filling fraction.  相似文献   

18.
Emphasizing the physical constraints on the formulation of the quantum theory, based on the standard measurement axiom and the Schrödinger equation, we comment on some conceptual issues arising in the formulation of the $\mathcal{P}\mathcal{T}$ -symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the $\mathcal{C}\mathcal{P}\mathcal{T}$ -inner product, that was widely known to mathematicians since 1950’s. We show how this derivation is linked with the pseudo-Hermitian formulation of the $\mathcal{P}\mathcal{T}$ -symmetric quantum mechanics.  相似文献   

19.
We suggest a new phenomenological potential for heavy quarkonium. The potential has a Lorentz vector term motivated by experimental leptonic widths for vector mesons and perturbative QCD at short distances and a Lorentz scalar term responsible for quark confinement at large distances. Using this potential we calculate the energy levels, leptonic decay widths, radiative transition rates and hadronic decay rates of the \(c\bar c, b\bar b\) and \(t\bar t\) systems. Most results agree well with the experiment.  相似文献   

20.
In 1996, Rovelli suggested a connection between black hole entropy and the area spectrum. Using this formalism and a theorem we prove in this paper, we briefly show the procedure to calculate the quantum corrections to the Bekenstein–Hawking entropy. One can do this by two steps. First, one can calculate the “naive” black hole degeneracy without the projection constraint (in case of the $U(1)$ symmetry reduced framework) or the $SU(2)$ invariant subspace constraint (in case of the fully $SU(2)$ framework). Second, then one can impose the projection constraint or the $SU(2)$ invariant subspace constraint, obtaining logarithmic corrections to the Bekenstein–Hawking entropy. In this paper, we focus on the first step and show that we obtain infinite relations between the area spectrum and the naive black hole degeneracy. Promoting the naive black hole degeneracy into its approximation, we obtain the full solution to the infinite relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号