首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
The ability of an alkyl branch to depress the melting temperature in a polyoxymethylene chain is measurably less than that in a polyethylene chain. The factors that inhibit the alkyl-branch plasticization of polyoxymethylene are considered by computational assessment of a series of model compounds at various levels of theory: DFT B3LYP 6-31+G*, DFT B3LYP 6-311++G**, MP2 cc-pVTZ, T1, and G3(MP2). Intramolecular interactions—characterized as acetal CH···O hydrogen bonds—are surprisingly strong and likely encourage conformational regularity in the vicinity of the alkyl branches, allowing maintenance of the intermolecular chain-chain interactions. The acetal CH···O hydrogen bonds in dimethylene glycol average to 2.65 kcal/mol while the non-acetal CH···O interactions in 1,3-propanediol are much weaker with an average of 0.34 kcal/mol (G3(MP2)). The related, classical OH···O hydrogen bond in ethylene glycol is found to be worth 2.12 kcal/mol. To describe this energetic ordering, an additional stabilizing anomeric effect is invoked for dimethylene glycol, a model for polyoxymethylene.  相似文献   

2.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The X-ray diffraction studies revealed disorder of a trichloroacetic acid?CN-methylurea complex crystal structure, connected with a proton transfer via O?CH···O hydrogen bond. The observed structure corresponds to a co-existence of ionic (salt) and neutral (co-crystal) forms of the complex in the solid state in ratio 3:1, respectively. The geometrical analysis based on ab initio and density functional theory methods combined with the experimental research indicated that two different N-methylurea molecular conformations, defined by CNCN torsion angle, correspond to the neutral and the ionic form of the complex, respectively. The conformational changes seem to be connected with stabilization of the ionic structure after a proton transfer, as according to theoretical calculations this form of the complex (the ionic one) was unstable in the gas phase. A particular attention was focused on a system of a double intermolecular hydrogen bonds, O?CH···O and N?CH···O which join molecules into the title complex. The analysis of these interactions performed in terms of their geometry, energetic and topological electron density properties let for their classification into strong and medium strength hydrogen bonds. It was also found that the antibonding hydrogen bonding donor orbital occupation corresponded to the stabilization energy resulting from charge transfer in hydrogen bonds. Hence, it is postulated as a possible indicator of interaction strength.  相似文献   

4.
Weak interactions usually show a versatile property to stabilize the molecular conformation and crystal packing in solid state. Crystal packing and conformational property of the synthesized compound 1(3‐cyano‐4,6‐dimethyl nicotinonitril‐1‐yl)‐3‐(phalimido‐1‐yl)‐1‐thioxyethane ( 2 ) is stabilized by CH···O, CH···N, and CH···π interactions. J. Heterocyclic Chem., 00 , 00 (2011).  相似文献   

5.
The polyaniline water hydrogen-bonded complex was studied by first-principles calculation. The density functional theory method was used to calculate the structure characters, natural bond orbital charge distribution, infrared spectra and the frontier molecular orbital. Results showed that the H–O···H–N and C–N···H–O type intermolecular hydrogen bonds were formed. The bonds involved in the intermolecular H-bond were all influenced by the hydrogen bonding interaction. During the hydrogen bond formation, the polymer chains in the complexes were all charged, which can be an important factor contributing to the increase of electrical conductivity. The N1–H vibration was strongly influenced, and the locations as well as the intensities of N1–H absorption bands were all changed in the complexes. In the orbital transition of HOMO to LUMO, the electron density transferred from benzenoid ring to quinoid ring.  相似文献   

6.
In this work, the geometry optimizations in the ground state and electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated fluorenone (FN) and FN‐based molecular monomers, the relatively hydrogen‐bonded dimers, and doubly hydrogen‐bonded trimers, are calculated by the density functional theory and time‐dependent density functional theory methods, respectively. We find the intermolecular hydrogen bond CO···H O is strengthened in some of the electronically excited states of the hydrogen‐bonded dimers and doubly hydrogen‐bonded trimers, because the excitation energy in a related excited state decrease and electronic spectral redshift are induced. Similarly, the hydrogen bond CO···H O is weakened in other excited states. On this basis, owing to the important difference of electronegativity, heteroatoms S, Se, and Te that substitute for the O atom in the carbonyl group of the FN molecule have a significant effect on the strength of the hydrogen bond and the spectral shift. It is observed that the hydrogen bond CTe···H O is too weak to be formed. When the CS and CSe substitute for CO, the strength of the hydrogen bonds and electronic spectra frequency shift are significantly changed in the electronic excited state due to the electron transition type transformation from the ππ* feature to σπ* feature. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:153–162, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21075  相似文献   

7.
The donor‐acceptor complexes Et2O·SeO3 and (Me2O)2·SeO3 can be obtained as primary products by the reactions of selenium trioxide with dimethyl ether (Me2O) and diethyl ether (Et2O). The crystal and molecular structure of both complexes, which are stable below their melting points only, was determined by X‐ray structure analysis. Pairs of molecules Et2O·SeO3 form dimers due to two weak intermolecular Se···O contacts. No intermolecular interactions were observed in (Me2O)2·SeO3. Trigonal bipyramidal coordination around SeVI atoms in the latter complex is almost undistorted. Conversion of the adducts to dialkylesters of diselenic and selenic acid in the liquid phase was monitored by Raman, 1H‐ and 77Se‐NMR spectroscopy.  相似文献   

8.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

9.
The H‐bonded complexes formed from interaction between NH2NO (NA) and H2O2 (HP) have been investigated by using B3LYP and MP2 methods with a wide range of basis sets. We found six H‐bonded complexes in which three of them have cyclic structure. Calculations carried out at various levels show that the seven‐membered cyclic structure with O···HO and O···HN hydrogen bonding interactions is the most stable complex. The large binding energy obtained for A1 complex probably results from a more linear arrangement of the O···H N and O H···OH‐bonds in the seven‐membered structure A1. The natural bond orbital (NBO) analysis and the Bader's quantum theory of atoms in molecules have been used to elucidate the interaction characteristics of the NA‐HP complexes. The NBO results reveal that the charge transfer energy corresponds to the H‐bond interactions for A1 complex is grater than other complexes. The electrostatic nature of H‐bond interactions is predicted from QTAIM analysis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
The formation of hydrogen bonds and molecular dynamics for the molecules cis‐1‐(2‐hydroxy‐5‐methylphenyl)ethanone oxime ( I ) and N‐(2‐hydroxy‐4‐methylphenyl)acetamide ( II ) have been investigated in solution using NMR. The results confirm the formation of O? H···O, O? H···N and O···H? N type inter‐ and intramolecular hydrogen bonds. Spin‐lattice relaxation times (T1), activation energy of molecular dynamics and energy of intramolecular hydrogen bonds have been determined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Proton transfer in hydrogen‐bonded organic co‐crystals of chloranilic acid with some organic bases was investigated by nuclear quadrupole resonance (NQR) spectroscopy. The 35Cl NQR frequencies of chloranilic acid molecule as well as 14N NQR frequencies of the organic base molecule were measured with the conventional pulse methods as well as double‐resonance methods, respectively. The extent of proton transfer in the O···H···N hydrogen bond was estimated from Townes–Dailey analysis of the 14N NQR parameters. The 35Cl NQR frequency and molecular geometry of chloranilic acid are correlated to the extent of proton transfer in the protonation process of the organic base molecule. It is shown that the hydrogen bond affects the π‐electron system of chloranilic acid. Geometry dependence of the O···H···N hydrogen bond, i.e. the H? N valence bond order versus the hydrogen‐bond geometry correlation is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The structures and binding energies of complexes between substituted carbonyl bases and water are the B3LYP/6‐311++G(d,p) computational level. The calculations also include the proton affinity (PA) of the O of the C?O group, the deprotonation enthalpies (DPE) of the CH bonds along a natural bond orbital analysis. The calculations reveal that stable open C?O···HwOw as well as cyclic CH···OwHw···O?C complexes are formed. The binding energies for the open complexes are linearly related to the PAs, whereas the binding energies for the cyclic complexes depend on both the PA and DPE. Different indicators of hydrogen bonds strength such as electron charge density, intramolecular and intermolecular hyperconjugation energy, occupation of orbitals, and charge transfer show significant differences between open and cyclic complexes. The contraction of the CH bond of the formyl group and the corresponding blue shift of the ν(CH) vibration are explained by the classical trans lone pair effect. In contrast, the elongation or contraction of the CH3 group involved in the interaction with water results from the variation of the orbital interaction energies from the σ(CH) bonding orbital to the σ* and π* antibonding orbitals of the C?O group. The resulting blue or red shifts of the ν(CH3) vibrations are calculated in the partially deuterated isotopomers. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Some new (S)‐1‐aryl‐N‐(1‐hydroxy‐3‐phenylpropan‐2‐yl)‐5‐methyl‐1 H‐1,2,3‐triazole‐4‐carboxamides 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and established by 1H and 13C NMR, IR, MS spectra, CHN analyses, and x‐ray diffraction crystallography. The molecular conformation and packing is stabilized by interactions of intermolecular H‐bond O2’‐H2'···O1, O2‐H2···O1’ and intramolecular H‐bond N4’‐H4'N···N3’, N4’‐H4'N···O2’, N4‐H4N···N3, N4‐H4N···O2. The two rings of five numbers were formed by H‐bond in a molecular.  相似文献   

14.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
In recent years, cocrystallization has emerged as an effective way of tuning the properties of compounds and has been widely used in the field of energetic materials. In this study, we have prepared two novel cocrystals of CL‐20 and methylimidazole, including a 1:2 CL‐20 / 2‐mercapto‐1‐methylimidazole ( 1 ) and a 1:4 CL‐20 / 4‐methyl‐5‐nitroimidazole ( 2 ). Cocrystal 1 has good physical and detonation properties (ρ1 = 1.652 g · cm–3, D1 = 7073 m · s–1, P1 = 21.6 GPa); however, cocrystal 2 shows higher properties (ρ2 = 1.680 g · cm–3, D2 = 7945 m · s–1, P2 = 27.4 GPa). The performance of both cocrystals is better than those of TNT. Thermal performance suggests that both the cocrystals have moderate thermal stabilities. Cocrystal 1 decomposes at 164.9 °C and cocrystal 2 has an exothermic peak at 221 °C. Both cocrystals are insensitive energetic explosives (IS > 40 J, FS > 360 N). Methylimidazole compounds are rarely used as coformers to form cocrystals with CL‐20, which possess good properties for a range of potential applications. Herein, we provide new possible directions for enriching cocrystal speciation.  相似文献   

16.
The crystal structures of potassium hydrogen difluoromaleate (KHDFM) and potassium hydrogen difluorofumarate (KHDFF) have been determined by single crystal X-ray methods. The hydrogen difluoromaleate ion has a closed ring structure with a short intramolecular hydrogen bond. The O· O distance is 2.415(1) Å The hydrogen difluorofumarate ions form infinite chains via short intermolecular hydrogen bonds.The O· ;O distance is 2.450(5) Å. In both compounds the hydrogen bonds are across crystallographic symmetry elements. The vibrational spectra of both compounds and their deuterated derivatives have been recorded and assigned. The IR spectrum of KHDFF is of Speakman's A2 type. The spectra of KHDFM and potassium hydrogen maleate are very similar.  相似文献   

17.
Cocrystallization of baicalein with nicotinamide yields a 1:1 cocrystal [systematic name: pyridine‐3‐carboxamide–5,6,7‐trihydroxy‐2‐phenyl‐4H‐chromen‐4‐one (1/1)], C6H6N2O·C15H10O5. The asymmetric unit contains one baicalein and one nicotinamide molecule, both in neutral forms. Molecules in the cocrystal form column motifs stabilized by an array of intermolecular hydrogen bonds.  相似文献   

18.
19.
By dropwise adding thio ligands to concentrated aqueous solutions of Cd(ClO4)2·6H2O, polymeric complexes, Cd(II) O, O'‐dipropyldithiophosphate (1), O, O'‐dibutyl‐dithiophosphate (2), O, O'‐diisopropyl‐dithiophosphate (3) and O, O'‐diisobutyl‐dithiophosphate (4) were obtained. The structure of 4 was determined by X‐ray diffraction analysis, showing that the metal ion sits in distorted tetrahedral sulphur coordination sphere and that the eight‐membered bimetallic rings take the twist chair and boat conformations, alternately. Based on facts that the S(1)—Cd bond length [0.25099(12) nm] is shorter than the other S—Cd bond length [0.25399(12)—0.25701(18) nm] and that the S(1)‐involving angles [113.45(4)°—118.43(5)°] are systematically larger than the normal angles of a tetrahedron, the ligands are hypothesized to be erratically functionalized to Cd(II). To certify the steric nonequivalence of ligands, the compounds were investigated by solid 13C, 31P and 113Cd NMR spectroscopy.  相似文献   

20.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号