首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In order to provide a direction in molecular design of catechol (Cat) dyes for type II dye‐sensitized solar cells (DSSCs), the dye‐to‐TiO2 charge‐transfer (DTCT) characteristics of Cat dyes with various substituents and their photovoltaic performance in DSSCs are investigated. The Cat dyes with electron‐donating or moderately electron‐withdrawing substituents exhibit a broad absorption band corresponding to DTCT upon binding to TiO2 films, whereas those with strongly electron‐withdrawing substituents exhibit weak DTCT. This study indicates that the introduction of a moderately electron‐withdrawing substituent on the Cat moiety leads to not only an increase in the DTCT efficiency, but also the retardation of back electron transfer. This results in favorable conditions for the type II electron‐injection pathway from the ground state of the Cat dye to the conduction band of the TiO2 electrode by the photoexcitation of DTCT bands.  相似文献   

2.
A series of novel organic dyes (ICZA1, ICZA2, ICZA3, ICZA4) with D-π-A structural configuration incorporating indolo[3,2,1-jk]carbazole moiety as donor (D) unit, thiophene as π-linker and 2-cyanoacrylic acid as acceptor unit were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Indolo[3,2,1-jk]carbazole-based D-π-A dyes composed of different acceptor groups were designed. By modulating acceptor unit, the efficiency of D-π-A dye-based dye-sensitized solar cells (DSSCs) can be further improved. In the present work, four novel push-pull organic dyes only differing in electron acceptor, have been designed based on the experimental literature value of IC-2. In order to further improve the light harvesting capability of indolo[3,2,1-jk]carbazole dyes, the acceptor influence on the dye performance were examined. The NLO property of the designed dye molecules can be derived as polarizability and hyperpolarizability. The calculated value of ICZA2 dye is the best candidate for NLO properties. Furthermore, the designed organic dyes exhibit good photovoltaic performance of charge transfer characteristics, driving force of electron injection, dye regeneration, global reactivity, and light harvesting efficiency (LHE). From the calculated value of ICZA4 dye, it has been identified as a good candidate for DSSCs applications. Finally, it is concluded that the both ICZA2 and ICZA4 dyes theoretically agrees well with the experimental value of IC-2 dye. Hence, the dyes ICZA2 and ICZA4 can serve as an excellent electron withdrawing groups for NLO and DSSCs applications.  相似文献   

3.
All‐organic dyes have shown promising potential as an effective sensitizer in dye‐sensitized solar cells (DSSCs). The design concept of all‐organic dyes to improve light‐to‐electric‐energy conversion is discussed based on the absorption, electron injection, dye regeneration, and recombination. How the electron‐donor–acceptor‐type framework can provide better light harvesting through bandgap‐tuning and why proper arrangement of acceptor/anchoring groups within a conjugated dye frame is important in suppressing improper charge recombination in DSSCs are discussed. Separating the electron acceptor from the anchoring unit in the donor–acceptor‐type organic dye would be a promising strategy to reduce recombination and improve photocurrent generation.  相似文献   

4.
采用密度泛函理论和含时密度泛函理论方法计算了2个吩噻嗪类染料及其吸附到TiO2上后分子的基态和激发态光物理性质与热力学参数.结果表明,电子给体的改变虽未明显改变染料的光谱性质(垂直跃迁能和振子强度),但可以改变分子的前线轨道能级,进而影响染料分子的激子结合能Eb及激发态电子注入到半导体TiO2中的驱动力△Gint的大小...  相似文献   

5.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye‐sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron‐deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO2 surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

6.
A novel series of dipolar organic dyes containing diarylamine as the electron donor, 2‐cyanoacrylic acid as the electron acceptor, and fluorene and a heteroaromatic ring as the conjugating bridge have been developed and characterized. These metal‐free dyes exhibited very high molar extinction coefficients in the electronic absorption spectra and have been successfully fabricated as efficient nanocrystalline TiO2 dye‐sensitized solar cells (DSSCs). The solar‐energy‐to‐electricity conversion efficiencies of DSSCs ranged from 4.92 to 6.88 %, which reached 68–96 % of a standard device of N719 fabricated and measured under the same conditions. With a TiO2 film thickness of 6 μm, DSSCs based on these dyes had photocurrents surpassing that of the N719‐based device. DFT computation results on these dyes also provide detailed structural information in connection with their high cell performance.  相似文献   

7.
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes.  相似文献   

8.
We report DFT studies on some perylene‐based dyes for their electron transfer properties in solar cell applications. The study involves modeling of different donor‐π‐acceptor type sensitizers, with perylene as the donor, furan/pyrrole/thiophene as the π‐bridge and cyanoacrylic group as the acceptor. The effect of different π‐bridges and various substituents on the perylene donor was evaluated in terms of opto‐electronic and photovoltaic parameters such as HOMO‐LUMO energy gap, λmax, light harvesting efficiency(LHE), electron injection efficiency (Øinject), excited state dye potential (Edye*), reorganization energy(λ), and free energy of dye regeneration (). The effect of various substituents on the dye–I2 interaction and hence recombination process was also evaluated. We found that the furan‐based dimethylamine derivative exhibits a better balance of the various optical and photovoltaic properties. Finally, we evaluated the overall opto‐electronic and transport parameters of the TiO2‐dye assembly after anchoring the dyes on the model TiO2 cluster assembly.  相似文献   

9.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35?%, which translates to approximately 79?% of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

10.
A new‐type of donor–acceptor π‐conjugated (D‐π‐A) fluorescent dyes NI3 – NI8 with a pyridine ring as electron‐withdrawing‐injecting anchoring group have been developed and their photovoltaic performances in dye‐sensitized solar cells (DSSCs) are investigated. The short‐circuit photocurrent densities and solar energy‐to‐electricity conversion yields of DSSCs based on NI3 – NI8 are greater than those for the conventional D‐π‐A dye sensitizers NI1 and NI2 with a carboxyl group as the electron‐withdrawing anchoring group. The IR spectra of NI3 – NI8 adsorbed on TiO2 indicate the formation of coordinate bonds between the pyridine ring of dyes NI3 – NI8 and the Lewis acid sites (exposed Tin+ cations) of the TiO2 surface. This work demonstrates that the pyridine rings of D‐π‐A dye sensitizers that form a coordinate bond with the Lewis acid site of a TiO2 surface are promising candidates as not only electron‐withdrawing anchoring group but also electron‐injecting group, rather than the carboxyl groups of the conventional D‐π‐A dye sensitizers that form an ester linkage with the Brønsted acid sites of the TiO2 surface.  相似文献   

11.
Three new dyes with a 2‐(1,1‐dicyanomethylene)rhodanine (IDR‐ I , ‐ II , ‐ III ) electron acceptor as anchor were synthesized and applied to dye‐sensitized solar cells. We varied the bridging molecule to fine tune the electronic and optical properties of the dyes. It was demonstrated that incorporation of auxiliary acceptors effectively increased the molar extinction coefficient and extended the absorption spectra to the near‐infrared (NIR) region. Introduction of 2,1,3‐benzothiadiazole (BTD) improved the performance by nearly 50 %. The best performance of the dye‐sensitized solar cells (DSSCs) based on IDR‐ II reached 8.53 % (short‐circuit current density (Jsc)=16.73 mA cm?2, open‐circuit voltage (Voc)=0.71 V, fill factor (FF)=71.26 %) at AM 1.5 simulated sunlight. However, substitution of BTD with a group that featured the more strongly electron‐withdrawing thiadiazolo[3,4‐c]pyridine (PT) had a negative effect on the photovoltaic performance, in which IDR‐ III ‐based DSSCs showed the lowest efficiency of 4.02 %. We speculate that the stronger auxiliary acceptor acts as an electron trap, which might result in fast combination or hamper the electron transfer from donor to acceptor. This inference was confirmed by electrical impedance analysis and theoretical computations. Theoretical analysis indicates that the LUMO of IDR‐ III is mainly localized at the central acceptor group owing to its strong electron‐withdrawing character, which might in turn trap the electron or hamper the electron transfer from donor to acceptor, thereby finally decreasing the efficiency of electron injection into a TiO2 semiconductor. This result inspired us to select moderated auxiliary acceptors to improve the performance in our further study.  相似文献   

12.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

13.
In this review, the introduction of solar cells is presented. Old and new generation solar cells are briefly described. Quantum dot solar cells (QDSCs), perovskite solar cells, and dye-sensitized solar cells (DSSCs) are concisely introduced. The sensitization mechanism in DSSCs is discussed in detail concerning the spectral and electron injection properties of different dyes. An analysis of the intramolecular charge transfer process in the excited dye molecule is also provided. The use of porphyrin-based dyes as sensitizers in DSSCs is then reviewed. The design, synthesis, and photovoltaic application of a wide variety of porphyrin-based dyes as well as porphyrin dyads are presented and discussed. Theoretical studies of the spectral and electronic properties of different porphyrin-based dyes using DFT and TD-DFT methods are described. The different possibilities for improving the light-to-electrical energy conversion performance are discussed, such as structural modifications through introducing push-pull moieties, which in turn tunes the HOMO-LUMO energy gap of the sensitizing dye used in the DSSC. Experimental, as well as theoretical calculations of adsorption energies of the sensitizing dyes, are crucial for predicting the relative performance and efficiency of the dyes.  相似文献   

14.
Herein, we report four metal‐free organic polymethacrylates (In‐In‐BzI)PMA , (Ac‐In‐BzI)PMA , (TPA‐In‐BzI)PMA , and (Py‐In‐BzI)PMA with pendant chromophores donor‐π‐conjugated‐acceptor (D‐π‐A) molecular framework as photosensitizers for dye‐sensitized solar cells (DSSCs). In which the donor‐acceptor units are attached by an indole‐chalcone extending side chain to inhibit back electron transfer and charge recombination; the π‐linker component contains varied chalcone‐based substituents to enhance the sunlight‐harvesting ability of the solar device. Photon‐current cells based on the DSSC format were fabricated using the polymers as sensitizers. The DSSC device assembled using (TPA‐In‐BzI)PMA exhibits a considerably better IPCE peak and JV response, with an overall power conversion efficiency of 3.70% under the illumination of AM 1.5G (100 mW cm–2). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 997–1007  相似文献   

15.
D-π-A型有机光敏染料结构上的微小差异会引起器件性能的显著不同. 为了合理解释染料分子1和2(给体分别为咔唑和二氢吲哚)结构与性能之间的关系, 采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)讨论了包括紫外-可见吸收光谱、 光捕获效率、 电子注入驱动力、 垂直方向偶极矩和电子转移数目在内的一系列影响染料性能的理论参数. 结果表明, 在光捕获效率和电子注入效率差别不大的情况下, 染料分子2较低的染料再生效率可导致其短路电流较小; 同时, 在由光诱导产生的从染料分子转移到半导体的电子数目以及电子复合程度相差不大的情况下, 染料分子1垂直方向上较大的偶极矩则可导致其具有较高的开路电压. 计算结果与实验值相吻合, 有望对今后设计合成高效光敏染料提供一定的理论指导.  相似文献   

16.
In this study a novel symmetrical metal‐free organic dye for applications in dye‐sensitized solar cells (DSSCs) was synthesized. This dye ( D ) was designed with A–π–D–π–A framework and synthesized with 9,9‐dioctylfluorene as electron donor, phenylene as π‐spacer and cyanoacetic acid as electron acceptor. The chemical structure of product was determined using UV‐Vis, FT‐IR, CNMR, HNMR spectroscopy techniques. The presence of a phenylene π‐bridge between the donor and the acceptor units and the di‐anchoring moieties in this structure led to enhancement of conjugation lengths and molar extinction coefficient (ε) that is promising for further improvement of the conversion efficiency of DSSCs.  相似文献   

17.
A novel multifunctional conjugated polymer (RCP‐1) composed of an electron‐donating backbone (carbazole) and an electron‐accepting side chain (cyanoacetic acid) connected through conjugated vinylene and terthiophene has been synthesized and tested as a photosensitizer in two major molecule‐based solar cells, namely dye sensitized solar cells (DSSCs) and organic photovoltaic cells (OPVs). Promising initial results on overall power conversion efficiencies of 4.11% and 1.04% are obtained from the basic structure of DSSCs and OPVs based on RCP‐1, respectively. The well‐defined donor (D)‐acceptor (A) structure of RCP‐1 has made it possible, for the first time, to reach over 4% of power conversion efficiency in DSSCs with an organic polymer sensitizer and good operation stability.  相似文献   

18.
Based on spiro[fluorene-9,90-xanthene](SFX, dye 1), the Lindqvist-type polyoxometalate(POM) functionalized with SFX and its derivatives(dyes 2-4) used in dye-sensitized solar cells(DSSCs) were designed and investigated with the density functional theory(DFT) and time-dependent DFT(TD-DFT) calculations. The results indicate that Lindqvist-type POM is the main contribution to the lowest unoccupied molecular orbital(LUMO) and affects the LUMO energies of dyes 2-4. The maximum absorptions of the designed dyes containing POM(dyes 2-4) are red shifted comparing with that of dye 1. The introduction of electron-donating group onto SFX segment is helpful to red shift the absorption spectra. The major factors affecting the performance of DSSCs, including light harvesting and electron injection were evaluated. Considering the absorption spectra and photovoltaic parameters, dyes 3 and 4 are promising high performance dye sensitizers in n-type DSSCs.  相似文献   

19.
Organic dyes that contain a 2,7‐diaminofluorene‐based donor, a cyanoacrylic‐acid acceptor, and various aromatic conjugation segments, which are composed of benzene, fluorene, carbazole, and thiophene units, as a π‐bridge have been synthesized and characterized by optical, electrochemical, and theoretical investigations. The trends in the absorption and electrochemical properties of these dyes are in accordance with the electron‐donating ability of the conjugating segment. Consequently, the dyes that contained a 2,7‐carbazole unit in the π‐spacer exhibited red‐shifted absorption and lower oxidation potentials than their corresponding fluorene‐ and phenylene‐bridged dyes. However, the enhanced power‐conversion efficiency that was exhibited by the fluorene‐bridged dyes in the DSSCs was attributed to their broader and intense absorption. Despite the longer‐wavelength absorption and reasonable optical density, carbazole‐bridged dyes exhibited lower power‐conversion efficiencies, which were ascribed to the poor alignment of the LUMO level in these dyes, thereby leading to the inhibition of electron injection into the TiO2 conduction band.  相似文献   

20.
Four novel donor ? π‐bridge ? acceptor (D ? π ? A) polymeric metal complexes (P1–P4) based on 8‐hydroxyquinoline metal complexes were synthesized and tested for their performance in dye‐sensitized solar cells (DSSCs). The polymeric metal complexes dyes use alkoxy benzene or alkyl fluorene as the electron donor and C=C as π linker; the 8‐hydroxyquinoline derivative complex part was used as the electron acceptor and diaminomaleonitrile was used as ancillary ligand. The two strongly electron‐withdrawing cyano groups in the polymer structure can provide an efficient charge transport in the intramolecular between donor and acceptor parts. The thermal, photophysical, electrochemical and photovoltaic properties of these copolymers were investigated by TGA, differential scanning calorimetry, cyclic voltammetry and cureent density‐voltage curves, and the results showed that dye containing complex Zn(II) and alkoxy benzene unit benefited the generation of photocurrent and open‐circuit voltages, and a maximum power conversion efficiency of 1.91% (P2) was obtained, with an open‐circuit voltage of 0.71 V, a short‐circuit current density of 4.23 mA cm?2, and a fill factor of 38.6% under AM1.5G irradiation. The study results also show that the four polymers exhibit good thermal stability, indicating that these polymeric metal complexes are suitable for the fabrication processes of optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号