首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
A unique heterobimetallic disulfur monoradical, complex 2 , with a diamond‐shaped {NiS2Pt} core has been synthesized by two‐electron reduction of a supersulfido‐(nacnac)nickel(II) complex (nacnac=β‐diketiminato) with [Pt(Ph3P)22‐C2H4)] as a platinum(0) source and isolated in 82 % yield. Strikingly, the results of DFT calculations in accordance with spectroscopic (EPR, paramagnetic NMR) and structural features of the complex revealed that the bonding situation of the S2 ligand is between the elusive “half‐bonded” S2 radical trianion (${{\rm S}{{{{\bullet}}3- \hfill \atop 2\hfill}}}$ ) and two separated S2? ligands. Accordingly, the NiII center is partially oxidized, whereas the PtII site is redox innocent. The complex can be reversibly oxidized to the corresponding Ni,Pt‐disulfido monocation, compound 3 , with a S? S single bond, and reacts readily with O2 to form the corresponding superoxonickel(II) and disulfidoplatinum(II) ( 4 ) complexes. These compounds have been isolated in crystalline form and fully characterized, including IR and multi‐nuclear NMR spectroscopy as well as ESI mass spectrometry. The molecular structures of compounds 2 – 4 have been confirmed by single‐crystal X‐ray crystallography.  相似文献   

8.
9.
10.
11.
Synthesis, Crystal Structures, and Absorption Spectra of the New “Cupriosilicates”: K6[CuSi2O8] and Rb4[CuSi2O7] K6[CuSi2O8] and Rb4[CuSi2O7] were obtained by annealing intimate mixtures of K2O and Rb2O, respectively, CuO and SiO2 in sealed Ag cylinders at 500°C as transparent greenish-blue single crystals. The structure solution (IPDS-data Mo Kα; K6[CuSi2O8]: 1292 F2(hkl), R1 = 0.059; wR2 = 0.103 and Rb4[CuSi2O7]: 763 F2(hkl), R1 = 0.049; wR2 = 0.114) confirms the space group P1 for both compounds. K6[CuSi2O8]: a = 619.4(2); b = 665.5(2); c = 753.0(2) pm; α = 83.66(3); β = 87.71(3); γ = 70.19(3)°; Z = 1. Rb4[CuSi2O7]: a = 631.9(9); b = 707.5(10); c = 715.2(6) pm; α = 114.2(1); β = 100.7(1); γ = 107.9(1)°; Z = 1. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these calculated via Mean Effective Ionic Radii, MEFIR, are given. The absorption spectra of K6[CuSi2O8] and Rb4[CuSi2O7] are discussed in terms of the Angular Overlap Model, AOM.  相似文献   

12.
13.
Collision-induced dissociation of the ions [ArS]?, [ArSO]? and [ArSO2]? has uncovered a rich and varied ion chemistry. The major fragmentations of [ArS]? are complex and occur without prior ring hydrogen scrambling: for example, [C6H5S]?→[C2HS]? and [HS]?; [p-CD3C6H4S]?→[C6H4S]?˙, [CD3C4S]? and [C2HS]?. In contrast, all decompositions of [C6H5CH2S]? are preceded by specific benzylic and phenyl hydrogen interchange reactions. [ArSO2]? and [ArSO2]? ions undergo rearrangement, e.g. [C6H5SO]?→[C6H5O]? and [C6H5S]?; [C6H5SO2]?→[C6H5O] ?. The ion [C6H5CH2SO]? eliminates water, this decomposition is preceded by benzylic and phenyl hydrogen exchange.  相似文献   

14.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

15.
16.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

17.
Are the ‘Textbook Anions’ O2?, [CO3]2?, and [SO4]2? Fictitious? Experimental second electron affinities are still unknown for the title anions. It will be shown by means of quantum chemical ab initio calculations that these dianions are unstable with respect to spontaneous ionization. They all must be designated as non-existent.  相似文献   

18.
19.
A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water‐soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H+ form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE2+) in aqueous HCl solutions in the presence of [ZnCl4]2? and [CdCl4]2? anions as structure‐directing agents. Single‐crystal X‐ray diffraction analysis revealed that both iQ[7]–AE2+–[ZnCl4]2?–HCl and iQ[7]–AE2+–[CdCl4]2?–HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl4]2? and [CdCl4]2? anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE2+ coordination polymers through outer‐surface interactions of Q[n]s.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号