首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
The self‐assembly of cyano‐functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low‐energy electron diffraction, X‐ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close‐packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self‐assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close‐packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self‐assembly of the cyano‐functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule–substrate interactions.  相似文献   

2.
Small GTPases are molecular switches using GDP/GTP alternation to control numerous vital cellular processes. Although aberrant function and regulation of GTPases are implicated in various human diseases, direct targeting of this class of proteins has proven difficult, as GTPase signaling and regulation is mediated by extensive and shallow protein interfaces. Here we report the development of inhibitors of protein–protein interactions involving Rab proteins, a subfamily of GTPases, which are key regulators of vesicular transport. Hydrocarbon‐stapled peptides were designed based on crystal structures of Rab proteins bound to their interaction partners. These modified peptides exhibit significantly increased affinities and include a stapled peptide (StRIP3) that selectively binds to activated Rab8a and inhibits a Rab8a–effector interaction in vitro.  相似文献   

3.
Considering that aprotic solvents are often used as cosolvents in investigating the interactions between small molecules and proteins, we assessed the effects of five aprotic solvents represented by dimethylformamide (DMF) on the structure stabilities of metal‐free SOD1 (apo‐SOD1) by native electrospray ionization–ion mobility–mass spectrometry (ESI‐IM‐MS). These aprotic solvents include DMF, 1,3‐dimethyl‐2‐imidazolidinone (DMI), dimethyl sulfoxide (DMSO), acetonitrile (ACN), and tetrahydrofuran (THF). Results indicated that DMI, DMSO, and DMF at low percentage concentration could reduce the average charge and the dimer dissociation of apo‐SOD1. By contrast, ACN and THF at low concentration have no similar effect. DMF was selected as a representative solvent to further investigate the detailed effects on the structure stability of apo‐SOD1 by using collision‐induced dissociation and unfolding. The results reveal that the addition of minimal DMF to an aqueous protein solution can protect against the unfolding and dissociation of dimer, even under destabilizing conditions (such as low pH or high cone voltage). When the different percentage concentrations of DMF were added, the average collision cross section of apo‐SOD1 showed that apo‐SOD1 became compacted when the DMF concentration increased from 0% to 1% and eventually started extending when increased from 1% to 20%. The results indicated that DMF has similar effects to DMSO in native mass spectrometry (MS) and it can also be used as a cosolvent besides DMSO in investigating the stabilities of proteins and the interactions between small molecules and proteins.  相似文献   

4.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

5.
The orchestrated interaction of transmembrane proteins with other molecules mediates several crucial biological processes. Detergent solubilization may significantly alter or even abolish such hetero‐oligomeric interactions, which makes observing them at high resolution in their native environment technically challenging. Dipolar electron paramagnetic resonance (EPR) techniques such as pulsed electro–electron double resonance (PELDOR) can provide very precise distances within biomolecules. To concurrently determine the inter‐subunit interaction and the intra‐subunit conformational changes in hetero‐oligomeric complexes, a combination of different spin labels is required. Orthogonal spin labeling using a triarylmethyl (TAM) label in combination with a nitroxide label is used to detect protein–ligand interactions in native lipid bilayers. This approach provides a higher sensitivity and total selectivity and will greatly facilitate the investigation of multimeric transmembrane complexes employing different spin labels in the native lipid environment.  相似文献   

6.
Sol–gel‐derived bio/inorganic hybrid materials have been examined for diverse applications, including biosensing, affinity chromatography and drug discovery. However, such materials have mostly been restricted to the interaction between entrapped biorecognition elements and small molecules, owing to the requirement for nanometer‐scale mesopores in the matrix to retain entrapped biorecognition elements. Herein, we report on a new class of macroporous bio/inorganic hybrids, engineered through a high‐throughput materials screening approach, that entrap micron‐sized concatemeric DNA aptamers. We demonstrate that the entrapment of these long‐chain DNA aptamers allows their retention within the macropores of the silica material, so that aptamers can interact with high molecular weight targets such as proteins. Our approach overcomes the major limitation of previous sol–gel‐derived biohybrid materials by enabling molecular recognition for targets beyond small molecules.  相似文献   

7.
Resolving atomic site‐specific electronic properties and correlated substrate–molecule interactions is challenging in real space. Now, mapping of sub‐10 nm sized Pt nanoislands on a Au(111) surface was achieved by tip‐enhanced Raman spectroscopy, using the distinct Raman fingerprints of adsorbed 4‐chlorophenyl isocyanide molecules. A spatial resolution better than 2.5 nm allows the electronic properties of the terrace, step edge, kink, and corner sites with varying coordination environments to be resolved in real space in one Pt nanoisland. Calculations suggest that low‐coordinate atomic sites have a higher d‐band electronic profile and thus stronger metal–molecule interactions, leading to the observed blue‐shift of Raman frequency of the N≡C bond of adsorbed molecules. An experimental and theoretical study on Pt(111) and mono‐ and bi‐atomic layer Pt nanoislands on a Au(111) surface reveals the bimetallic effect that weakens with the increasing number of deposited Pt adlayer.  相似文献   

8.
Ras genes are frequently activated in human cancers, but the mutant Ras proteins remain largely “undruggable” through the conventional small‐molecule approach owing to the absence of any obvious binding pockets on their surfaces. By screening a combinatorial peptide library, followed by structure–activity relationship (SAR) analysis, we discovered a family of cyclic peptides possessing both Ras‐binding and cell‐penetrating properties. These cell‐permeable cyclic peptides inhibit Ras signaling by binding to Ras‐GTP and blocking its interaction with downstream proteins and they induce apoptosis of cancer cells. Our results demonstrate the feasibility of developing cyclic peptides for the inhibition of intracellular protein–protein interactions and of direct Ras inhibitors as a novel class of anticancer agents.  相似文献   

9.
Two‐dimensional metal–organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene‐4,5,9,10‐tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal–organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone–metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.  相似文献   

10.
Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best‐studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox‐active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post‐translational protein modification. Thus, protein–quinone modification is a heterogeneous process involving multiple DA‐derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.  相似文献   

11.
Two trinuclear zinc‐based cyclohelicates, Zn–PDB (PDB=[5‐(dibenzylamino)‐N1′,N3′‐bis(pyridin‐2‐ylmethylene)isophthalohydrazide]) and Zn–PMB (PMB=[5‐(bodipy‐oxy)‐N1′,N3′‐bis(pyridin‐2‐ylmethylene)isophthalohydrazide]) containing dibenzylamino and BODIPY groups, respectively, were generated by incorporating two amide‐containing tridentate chelators into meta‐positions of a substituted phenyl ring. Single‐crystal structure analysis and related spectroscopic characterizations demonstrated the formation of macrocyclic helicals both in the solid state and in solution. The host–guest behavior of the cyclohelical hosts towards γ‐glutamyl‐cysteinyl‐glycine (GSH) and its component amino acids was investigated by spectroscopic titrations. UV/Vis absorption titration and NMR titrations of Zn–PDB and Zn–PMB upon addition of the above‐mentioned guests suggested that the Glu residue of GSH was positioned within the cavity. The COO groups interacted with metal ions through static interactions. The Cys moiety of GSH interacted with the amide groups sited in host molecules through hydrogen‐bonding interactions to produce measurable spectral changes. Fluorescent titrations of Zn–PMB upon the addition of GSH and ESI‐MS investigations of the titration solutions confirmed the host–guest interaction modes and revealed the possible 1:1 complexation stoichiometry. These results showed that the recognition of a substrate within the cavity of functionalized metal–organic cage‐like receptors could be a useful method to produce supramolecular sensors for biomolecules.  相似文献   

12.
Au atoms in contact with TiC(001) undergo significant charge polarization. Strong metal–support interactions make Au/TiC(001) an excellent catalyst for the low‐temperature water–gas shift (WGS), with turnover frequencies orders of magnitude larger than those observed for conventional metal/oxide catalysts. DFT calculations indicate that the WGS reaction follows an associative mechanism with HOCO as a key intermediate.  相似文献   

13.
Current paper‐based potentiometric ion‐sensing platforms are planar devices used for clinically relevant ions. These devices, however, have not been designed for the potentiometric biosensing of proteins or small molecule analytes. A three‐dimensional origami paper‐based device, in which a solid‐contact ion‐selective electrode is integrated with an all‐solid‐state reference electrode, is described for the first time. The device is made by impregnation of paper with appropriate bioreceptors and reporting reagents on different zones. By folding and unfolding the paper structures, versatile potentiometric bioassays can be performed. A USB‐controlled miniaturized electrochemical detector can be used for simple and in situ measurements. Using butyrylcholinesterase as a model enzyme, the device has been successfully applied to the detection of enzyme activities and organophosphate pesticides involved in the enzymatic system as inhibitors. The proposed 3D origami paper device allows the potentiometric biosensing of proteins and small molecules in a simple, portable, and cost‐effective way.  相似文献   

14.
The structural transformation of supramolecular nanostructures with constitutional diversity and adaptability by dynamic coordination chemistry would be of fundamental importance for potential applications in molecular switching devices. The role of halogen doping in the formation of elementary metal–organic motifs on surfaces has not been reported. Now, the 9‐ethylguanine molecule (G) and Ni atom, as a model system, are used for the structural transformation and stabilization of metal–organic motifs induced by iodine doping on Au(111). The iodine atoms are homogeneously located at particular hydrogen‐rich locations enclosed by G molecules by electrostatic interactions, which would be the key for such an unexpected stabilizing effect. The generality and robustness of this approach are demonstrated in different metal–organic systems (G/Fe) and also by chlorine and bromine.  相似文献   

15.
Gold (Au) on ceria–zirconia is one of the most active catalysts for the low‐temperature water–gas shift reaction (LTS), a key stage of upgrading H2 reformate streams for fuel cells. However, this catalyst rapidly deactivates on‐stream and the deactivation mechanism remains unclear. Using stop–start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X‐ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1–2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on‐stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs.  相似文献   

16.
Owing to their unique chemo‐physical and structural characteristics, amorphous bulk metallic glasses (BMGs) are of great demand for fabrication of variety of advanced and innovative products including surgical and biomedical tools and devices. In this study, a series of Ni‐free Zr‐based BMGs in Zr–Cu–Fe–Al system are fabricated using copper‐mold casting technique, and their biocorrosion and biocompatibility are evaluated with respect to their corrosion behavior in the phosphate buffered saline (pH = 7.4) solution. Anodic polarization curves, scanning electron microscopy combined with energy‐dispersive X‐ray, and wettability analyses are conducted to characterize the surfaces of BMG samples. The biocompatibility of the BMG and control samples is studied by comparing cell–substrate interactions among different samples. It is found that Zr60Cu20Fe10Al10 displays a higher passive region compared with that of Zr60Cu22.5Fe7.5Al10, but both BMGs exhibit lower corrosion resistance compared with Ti–6Al–4V alloy. By addition of titanium to Zr–Cu–Fe–Al system (Zr60Ti6Cu19Fe5Al10), a significant increase in the passive region of the polarization curve is detected. The cell culture experiments reveal that the number of attached and grown cells is significantly higher on the surface of the treated BMGs as compared with Ti–6Al–4V substrates and the culture plate as controls. There is no noticeable difference in cellular morphology among the BMG samples, and no cytotoxicity is detected. We speculate that the interaction of water molecules and matrix proteins with the surfaces of BMGs plays an important role in cell–substrate interactions and improved cell response. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The tuning of metal–metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox‐active PNO ligand to AuI followed by homoleptic metalation of the NO pocket with NiII affords a unique trinuclear Au–Ni–Au complex. This species features two antiferromagnetically coupled ligand‐centered radicals and a double intramolecular d8–d10 interaction, as supported by spectroscopic, single‐crystal X‐ray diffraction, and computational data. A corresponding cationic dinuclear Au–Ni analogue with a stronger d8–d10 interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au–Ni–Au complex facilitates electrocatalytic C?X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox‐active ligand framework, an available coordination site at gold, and the nature of the nickel–gold interaction appear to be essential for this reactivity.  相似文献   

18.
Herein, an amino‐acid‐boosted biomimetic strategy is reported that enabled the rapid encapsulation, or co‐encapsulation, of a broad range of proteins into microporous metal–organic frameworks (MOFs), with an ultrahigh loading efficiency. It relies on the accelerated formation of prenucleation clusters around proteins via a metallothionein‐like self‐assembly. The encapsulated proteins maintained their native conformations, and the structural confinement within porous MOFs endowed enzymes with excellent bioactivity, even in harsh conditions (e.g. in the presence of proteolytic or chemical agents or at high temperature). Furthermore, owing to the merits of nondestructive and protein surface charge‐independent encapsulation, the feasibility of this biomimetic strategy for biostorage, enzyme cascades, and biosensing was also verified. It is believed that this convenient and versatile encapsulation strategy has great promise in the important fields of biomedicine, catalysis, and biosensing.  相似文献   

19.
The interplay between cation–π and coinage‐metal–oxygen interactions are investigated in the ternary systems N???PhCCM???O (N=Li+, Na+, Mg2+; M=Ag, Au; O=water, methanol, ethanol). A synergetic effect is observed when cation–π and coinage‐metal–oxygen interactions coexist in the same complex. The cation–π interaction in most triads has a greater enhancing effect on the coinage‐metal–oxygen interaction. This effect is analyzed in terms of the binding distance, interaction energy, and electrostatic potential in the complexes. Furthermore, the formation, strength, and nature of both the cation–π and coinage‐metal–oxygen interactions can be understood in terms of electrostatic potential and energy decomposition. In addition, experimental evidence for the coexistence of both interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

20.
Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho‐diphenol)‐containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme‐mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross‐linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface‐confined reactions (e.g., biomineralization, metal ion chelation, and N‐hydroxysuccinimide conjugation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号