首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Molecular chirality is introduced at liquid–solid interfaces. A ring‐like aggregation of amyloid Aβ(1–40) on N‐isobutyryl‐L ‐cysteine (L ‐NIBC)‐modified gold substrate occurs at low Aβ(1–40) concentration, while D ‐NIBC modification only results in rod‐like aggregation. Utilizing atomic force microscope controlled tip‐enhanced Raman scattering, we directly observe the secondary structure information for Aβ(1–40) assembly in situ at the nanoscale. D ‐ or L ‐NIBC on the surface can guide parallel or nonparallel alignment of β‐hairpins through a two‐step process based on electrostatic‐interaction‐enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aβ(1–40) are proposed, which may provide insight into the understanding of this effect.  相似文献   

3.
Non‐aqueous lithium–oxygen batteries are considered as most advanced power sources, albeit they are facing numerous challenges concerning almost each cell component. Herein, we diverge from the conventional and traditional liquid‐based non‐aqueous Li–O2 batteries to a Li–O2 system based on a solid polymer electrolyte (SPE‐) and operated at a temperature higher than the melting point of the polymer electrolyte, where useful and most applicable conductivity values are easily achieved. The proposed SPE‐based Li‐O2 cell is compared to Li–O2 cells based on ethylene glycol dimethyl ether (glyme) through potentiodynamic and galvanostatic studies, showing a higher cell discharge voltage by 80 mV and most significantly, a charge voltage lower by 400 mV. The solid‐state battery demonstrated a comparable discharge‐specific capacity to glyme‐based Li–O2 cells when discharged at the same current density. The results shown here demonstrate that the safer PEO‐based Li–O2 battery is highly advantageous and can potentially replace the contingent of liquid‐based cells upon further investigation.  相似文献   

4.
5.
Solid–liquid–vapor interfaces dominated by the three‐phase contact line, usually performing as the active center in reactions, are important in biological and industrial processes. In this contribution, we provide direct three‐dimensional (3D) experimental evidence for the inside morphology of interfaces with either Cassie or Wenzel states at micron level using X‐ray micro‐computed tomography, which allows us to accurately “see inside” the morphological structures and quantitatively visualize their internal 3D fine structures and phases in intact samples. Furthermore, the in‐depth measurements revealed that the liquid randomly and partly located on the top of protrusions on the natural and artificial superhydrophobic surfaces in Cassie regime, resulting from thermodynamically optimal minimization of the surface energy. These new findings are useful for the optimization of classical wetting theories and models, which should promote the surface scientific and technological developments.  相似文献   

6.
Early studies showed that the adsorption of nanorods may start from a special “anchored” state, in which the nanorods lose translational motion but retain rotational freedom. Insight into how the anchored nanorods rotate should provide additional dimensions for understanding particle–surface interactions. Based on conventional time‐resolution studies, gold nanorods are thought to continuously rotate following initial interactions with negatively charged glass surfaces. However, this nanosecond time‐resolution study reveals that the apparent continuous rotation actually consists of numerous fast, intermittent rotations or transitions between a small number of weakly immobilized states, with the particle resting in the immobilized states most of the time. The actual rotation from one immobilized state to the other happens on a 1 ms timescale, that is, approximately 50 times slower than in the bulk solution.  相似文献   

7.
8.
In this paper, we describe a new type of polymer membrane‐based reference electrode (RE) based on ionic liquids (ILs), in both liquid‐contact (LCRE) and solid‐contact reference electrode (SCRE) forms. The ILs used were bis(trifluoromethane sulfonyl)amid with 1‐alkyl‐3‐methyl‐imidazolium as well as phosphonium and ammonium cations. In addition to their charge stabilisation role, it was found that the ILs also functioned as effective plasticizers in the PVC matrix. The LCREs and SCREs were prepared using the same design as their corresponding indicator electrodes. LCREs were prepared by casting in glass rings while SCREs were prepared on platforms made using screen‐printing technology, with poly(3‐octylthiophene‐2,5 diyl) (POT) as the intermediate polymer. After potentiometric characterization of the response mechanism, the practical performance of the REs was studied using potentiometric titrations (Pb2+ and pH), and characterised using cyclic voltammetry and impedance spectroscopy. All results were compared via parallel experiments in which the novel RE was substituted by a conventional double junction Ag/AgCl reference electrode. The mechanism of response is most likely based on a limited degree of partitioning of IL ions into the sample thereby defining aquo‐membrane interfacial potential. Despite their simple nature and construction, the REs showed excellent signal stability, and performed well in the analytical experiments. The identical mode of fabrication to that of the equivalent indicator (or Ion‐Selective Electrode, ISE) will facilitate mass‐production of both indicator and reference electrode using the same fabrication line, the only difference being the final capping membrane composition.  相似文献   

9.
Development of rechargeable lithium metal battery (LMB) remains a challenge because of uneven lithium deposition during repeated cycles of charge and discharge. Ionic liquids have received intensive scientific interest as electrolytes because of their exceptional thermal and electrochemical stabilities. Ionic liquid and ionic‐liquid–nanoparticle hybrid electrolytes based on 1‐methy‐3‐propylimidazolium (IM) and 1‐methy‐3‐propylpiperidinium (PP) have been synthesized and their ionic conductivity, electrochemical stability, mechanical properties, and ability to promote stable Li electrodeposition investigated. PP‐based electrolytes were found to be more conductive and substantially more efficient in suppressing dendrite formation on cycled lithium anodes; as little as 11 wt % PP‐IL in a PC‐LiTFSI host produces more than a ten‐fold increase in cell lifetime. Both PP‐ and IM‐based nanoparticle hybrid electrolytes provide up to 10 000‐fold improvements in cell lifetime than anticipated based on their mechanical modulus alone. Galvanostatic cycling measurements in Li/Li4Ti5O12 half cells using IL–nanoparticle hybrid electrolytes reveal more than 500 cycles of trouble‐free operation and enhanced rate capability.  相似文献   

10.
11.
Layered two‐dimensional (2D) inorganic transition‐metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2. We found that the reaction of liquid‐exfoliated 2D MoS2, with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2–M(OAc)2 materials. Importantly, this method furnished the 2H‐polytype of MoS2 which is a semiconductor. X‐ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT–IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H‐MoS2 allows for its dispersion/processing in more conventional laboratory solvents.  相似文献   

12.
Knowledge of the (supra)molecular structure of an interface that contains amphiphilic ligand molecules is necessary for a full understanding of ion transfer during solvent extraction. Even if molecular dynamics already yield some insight in the molecular configurations in solution, hardly any experimental data giving access to distributions of both extractant molecules and ions at the liquid–liquid interface exist. Here, the combined application of X‐ray and neutron reflectivity measurements represents a key milestone in the deduction of the interfacial structure and potential with respect to two different lipophilic ligands. Indeed, we show for the first time that hard trivalent cations can be repelled or attracted by the extractant‐enriched interface according to the nature of the ligand.  相似文献   

13.
Liquid‐crystalline (LC) hybrid polymers with functionalized silsesquioxanes with various proportions of LC monomer were synthesized by the reaction of polyhedral oligomeric silsesquioxane (POSS) macromonomer with methacrylate monomer having an LC moiety under common free‐radical conditions. The obtained LC hybrid polymers were soluble in common solvents such as tetrahydrofuran, toluene, and chloroform, and their structures were characterized with Fourier transform infrared, 1H NMR, and 29Si NMR. The thermal stability of the hybrid polymers was increased with an increasing ratio of POSS moieties as the inorganic part. Because of the steric hindrance caused by the bulkiness of the POSS macromonomer, the number‐average molecular weight of the hybrid polymers gradually decreased as the molar percentage of POSS in the feed increased. Their liquid crystallinities were very dependent on the POSS segments of the hybrid polymers behaving as hard, compact components. The hybrid polymer with 90 mol % LC moiety (Cube‐LC90) showed liquid crystallinity, larger glass‐transition temperatures, and better stability with respect to the LC homopolymer. The results of differential scanning calorimetry and optical polarizing microscopy showed that Cube‐LC90 had a smectic‐mesophase‐like fine‐grained texture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4035–4043, 2001  相似文献   

14.
The phospholipid bilayers of living cell membranes exist almost universally in a liquid state. This enables motion and spatial reorganization of membrane components on multiple length scales, which is an essential feature of many biological processes. There is great interest in the development of molecularly defined interfaces between synthetic materials and living cells. To this end, there is a need for solid substrate materials that can be derivatized with fluid, membrane‐like interfaces. Herein, we describe array fabrication of discrete liquid‐crystal areas supporting phospholipid monolayer membranes, and characterize the interactions with several different membrane surface proteins [avidin series, cholera toxin, green fluorescent protein (GFP), intercellular adhesion molecule (ICAM) and major histocompatibility complex (MHC)]. Three different linkage strategies (biotin, nickel chelating lipids complexing with histidine, and the choleratoxin binding unit (CTB) associating with GM1 are evaluated. Additionally, experiments with live immunological T cells forming active synapses at the interface exhibit the specific nature of the surface.  相似文献   

15.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

16.
We have developed a new Flory‐Huggins model by adding a specific interaction parameter derived from a modified double‐lattice model for the Helmholtz energy of mixing for binary liquid mixtures. This model is very simple and could be easily integrated into engineering applications. Using this revised model, we can successfully describe the phase behavior of polymer solutions with an upper critical solution temperature (UCST), a lower critical solution temperature (LCST), both UCST and LCST, and a closed miscibility loop. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 162–167, 2010  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号