首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The N(1)—N(1), N(2)—N(2), and N(1)—N(2) regioisomers of 1,2-bis[(prop-2-yn-1-yl)-1H-tetrazol-5-yl]ethane were first synthesized by alkylation of 1,2-bis(1H-tetrazol-5-yl)ethane with propargyl bromide. The peculiarities of the crystal structure of 1,2-bis[1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl]ethane were evaluated by X-ray diffraction analysis. This compound is readily underwent Cu-catalyzed [3+2] cycloaddition with p-tolyl azide, p-nitrophenyl azide, and benzyl azide to give heterocyclic assembles bearing 1,2,3-triazole and tetrazole cycles. Catalyst-free [3+2] cycloadditions of 1,2-bis[1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl]ethane and the mixtures of the N(1)—N(1), N(2)—N(2), N(1)—N(2) regioisomers with poly(glycidyl azide) oligomers resulted in 1,2,3-triazole cycles and crosslinking of the polymer chains.  相似文献   

2.
The azidation of 2,2-bis(2-cyanoethyl)-20-hydroxydammar-24-en-3-one afforded new tetrazole derivatives of natural dipterocarpol, 2-(2-cyanoethyl)-2-[2-(1H-tetrazol-5-yl)ethyl]-20-hydroxydammar-24-en- 3-ones, 2,2-bis[2-(1H-tetrazol-5-yl)ethyl]-20-hydroxydammar-24-en-3-one, and 2,2-bis[2-(1H-tetrazol-5-yl)- ethyl]-3-oxo-25,26,27-trinordammaran-(20S),24-olide. The structure of the final and intermediate products was determined by NMR spectroscopy and X-ray analysis.  相似文献   

3.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

4.
In this work, we have prepared Al-doped TiO2 nanoparticles via a hydrothermal method and used it for making photoanode in dye-sensitized solar cell (DSSC). Material characterizations were done using XRD, AFM, SEM, TEM and EDAX. XPS results reveal that Al is introduced successfully into the structure of TiO2 creating new impurity energy levels in the forbidden gap. This resulted in tuning of the conduction band of TiO2 and reduced charge recombination which led to better current conversion efficiency of DSSC. Greater dye loading and enhanced surface area was obtained for Al-doped TiO2 compared to un-doped TiO2. I-V analysis, EIS and Bode plots are employed to evaluate photovoltaic performance. The short-circuit current density (J sc) and efficiency (η) of cell employing Al-doped TiO2 photoanode were extensively enhanced compared to the cell using un-doped TiO2. The optical band gap (E g) for Al-doped and un-doped TiO2 was obtained as 2.8 and 3.2 eV, respectively. J sc and η were 13.39 mAcm?2 and 4.27%, respectively, under illumination of 100 mWcm?2 light intensity when thin films of 1% Al-doped TiO2 was employed as photoanode in DSSC using N719 as the sensitizer dye. With the use of un-doped TiO2 as photoanode under similar conditions, J sc 5.12 mAcm?2 and η 1.06% only could be obtained. The maximum IPCE% obtained with Al-doped TiO2 and un-doped TiO2 was 67 and 38% respectively at the characteristic wavelength of dye (λ max = 540 nm). The EIS analyses revealed resistive and capacitive elements that provided an insight into various interfacial processes in terms of the charge transport. It was observed that Al-doping reduced the interfacial resistance leading to better charge transport which has improved both photocurrent density and conversion efficiency. Higher electron mobility and fast diffusion resulting in greater charge collection efficiency was obtained for Al-doped TiO2 compared to the un-doped TiO2. Using the Mott–Schottky plot, the donor density was calculated for un-doped and Al-doped TiO2. The work demonstrated that the Al-doped TiO2 is potential photoanode material for low-cost and high-efficiency DSSC.  相似文献   

5.
2,2′,2″-(2,4,6-Trioxo-1,3,5-triazinane-1,3,5-triyl) triacetonitrile (or tris-(cyanomethyl)-isocyanurate) and 1,3,5-tris((1/2H-tetrazol-5-yl)methyl)-1,3,5-triazinane-2,4,6-trione (or tris-(5-tetrazolylmethyl)-isocyanurate) were synthesized with new methods. High yields, simple methodology, and cheapness are advantages of the methods. Furthermore, 1,3,5-tris((1/2H-tetrazol-5-yl)methyl)-1,3,5-triazinane-2,4,6-trione was synthesized in the less hazardous condition. The compounds were characterized by elemental analysis, IR, 1HNMR, 13CNMR and mass spectroscopic analysis. In addition, DSC/TGA measurements were carried out to determine the thermal behavior of the final product.  相似文献   

6.
A new reduced ferrous molybdophosphate composite solid of the formula, [(C10H14N2)H]4[FeII 10MoV 24(H2PO4)4(HPO4)12(PO4)4(H2O)16(OH)16O44]·12H2O, has been synthesized from a reaction mixture of MoO3, FeSO4·7H2O, C2H2O4·2H2O, nicotine, H3PO4, and H2O under hydrothermal conditions. The crystal data: monoclinic, space group C2/m, a = 24.4349(124), b = 12.9935(66), c = 14.7281(74) Å, β = 104.87(1) Å, V = 4520(4) Å3, Z = 2, R 1  = 0.0874, wR 2  = 0.2179. The structure is built from the building blocks of the formula, {FeII[Mo6P4O31]2}, consisting of a network of MO6 (M = Fe, Mo) octahedral and PO4 tetrahedral linked through their vertices. The connectivity of the building blocks with two pairs of face-sharing dinuclear Fe(II) clusters of the formula of [FeII 2(H2O)4O5] on which a phosphate group is hanging gives rise to one-dimensional chains with eight-membered apertures. The remarkable hydrogen bonded interactions between the chains form a unique and interesting framework with three-dimensional intersecting tunnels where the protonated nicotine molecules as structuring templates and crystallization water molecules are situated.  相似文献   

7.
A series of trans-palladium(II) complexes (trans-[PdCl2L2], L = ethyl 5-R-2H-tetrazol-2-ylacetate, 5-R-2H-tetrazol-2-ylacetamides, R = Me, Ph) has been synthesized, and their structure has been proved by 1H and 13C–{1H} NMR and high-resolution mass spectra and X-ray analysis. Antiproliferative activity of the synthesized complexes has been determined, and the mechanism of their interaction with DNA has been studied by UV and CD spectroscopy.  相似文献   

8.
Heterometallic pivalate Co2Sm(Piv)7(2,4-Lut)2 (1) was prepared for the first time and structurally characterized at 293 and 160 K. Antiferromagnetic exchange interactions are dominant in complex 1. This compound experiences a first-order phase transition within 210–260 K. A set of thermodynamic functions was obtained for this complex (C p , H T 0 - H 180 0 , and S T 0 ), and parameters were determined for solid-phase thermolysis where samarium cobaltate SmCoO3 is the only product.  相似文献   

9.
1H-Indole and 2-methyl-1H-indole reacted with ethyl 3-bromopropynoate over aluminum oxide to give mixtures of the corresponding ethyl 3-(1H-indol-3-yl)propynoates and ethyl 3,3-bis(1H-indol-3-yl)-acrylates, the latter prevailing.  相似文献   

10.
The reaction mechanism of the gas-phase PtCH2 + with H2S has been systematically investigated on the doublet and quartet potential energy surfaces at BPW91/6-311++G(2d, p)∪ SDD level. The Pt in PtCH2 + prefers to attack S–H bond in H2S. For PtCH2 + + H2S reaction, the potential energy surfaces (PESs), including three reaction pathways of hydrogen (including one and two hydrogen elimination) and methane elimination, have been explored and characterized. By contrast with hydrogen elimination, methane elimination reaction channel is energetically favorable, which is in good agreement with the experimental observation. The optimal S–H bond activation is the first step, followed by cleavage of Pt–C and Pt–S bond. About the path a and b, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction \(\varDelta E_{\text{int}}^{ \ne }\), which is the actual interaction energy between the deformed reactants in the transition state.  相似文献   

11.
New approaches have been proposed for the synthesis of compounds containing two bis(1H-pyrazol-1-yl)methane fragments. Nucleophilic replacement of the halogen atoms in appropriate tetrabromo derivatives by pyrazoles in the superbasic system KOH-DMSO gave ditopic chelating ligands: 1,1,2,2-tetrakis(1H-pyrazol-1-yl)ethane, 1,4-bis[bis(1H-pyrazol-1-yl)methyl]benzene, and 1,4-bis[bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl]benzene. 1,4-Bis[bis(1H-pyrazol-1-yl)methyl]benzene was also synthesized by reaction of 1H-pyrazole with terephthalaldehyde in the presence of thionyl chloride. 1,1,2,2-Tetrakis(1H-pyrazol-1-yl)ethane was converted into the corresponding tetraiodo and tetranitro derivatives.  相似文献   

12.
The complex [UO2(SeO4)(C5H12N2O)2(H2O)] (I) was synthesized and studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are orthorhombic: a = 13.1661(3) Å, b = 16.4420(5) Å, c = 17.4548(6) Å, Pbca, Z = 8, R = 0.0423. The structural units of crystal I are chains with the composition coinciding with that of the compounds of the AB2M 3 1 crystal chemical group of the uranyl complexes (A = UO 2 2+ , B2 = SeO 4 2? , M1 = C5H12N2O and H2O).  相似文献   

13.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

14.
Coordination polymers [Ag(C4H10N2)]ReO4 (I) and [Ag(C4H10N2)]PF6 (II) (C4H10N2 is piperazine, Ppz) were synthesized and their structures were determined. Crystals of compound I are monoclinic, space group P21/c, a = 6.207(1) Å, b = 12.533(1) Å, c = 11.386(1) Å, β = 93.41(1)°, V = 884.2(2) Å3, ρcalc = 3.337 g/cm3, Z = 4. Crystals of II are monoclinic, space group C2/m, a = 8.723(1) Å, b = 9.083(1) Å, c = 5.797(1) Å, β = 95.07(1)°, V = 457.5(1) Å3, ρcalc = 2.548 g/cm3, Z = 2. Structure I contains polymer chains [Ag(Ppz)] + . The silver atom is linked with two nitrogen atoms of the adjacent Ppz ligands to form a nearly linear fragment; the Ag-Nav distance is 2.173 Å, and the NAgN angle is 169.4(3)°. The chains are linked with each other by weak interactions Ag…O(ReO4) (2.643(8) Å) and N-H…O hydrogen bonds. The structure of compound II also contains cationic polymer chains [Ag(Ppz)] + . The Ag+ ion is located in the inversion center and has a linear coordination (Ag-N distance is 2.171(9) Å). The central P atom of the octahedral fluorophos-phate ion is also located in the inversion center; the anion is slightly distorted and has no contacts with silver ions at a distance <3.4 Å.  相似文献   

15.
A new Cu(II) complex, [Cu2(bzpy)2(Hbpd)2(H2O)](ClO4)2·H2O (1) based on bzpy (bzpy = 2-benzoylpyridine) and H2bpd (benzyl-2-pyridylmethanediol) mixing ligands, was synthesized and characterized by IR, UV–Vis spectra, TGA and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group P2(1)/n with a = 18.7790(2), b = 14.4609(3), c = 18.9434(4) Å, β = 102.17°, V = 5028.63(16) Å3, Z = 4. The complex bears a dinuclear structure in which two Cu(II) atoms adopt elongated square pyramidal (SP) and octahedral geometry, respectively, and two intramolecular π…π interactions are also observed. Then with the help of intermolecular π…π and CH…π interactions, a 1D chain structure is formed based on the dinuclear unit. Thermal stability of 1 was studied.  相似文献   

16.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

17.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

18.
The treatment of o-diaminobenzene with Zn ( OAc )2 · 2H2O in alcohol results in the formation of mononuclear bis(o-diaminobenzene)diacetate Zinc, Zn[C8H11N2O2]2. Its structure was determined by X-ray diffraction analysis. The complex is also characterized by elemental analysis, 1H NMR and IR. The crystal is monoclinic space group C2, parameters: a = 16.297(5), b = 4.775(3), c = 11.664(5) Å, β = 97.646(5)°, λ = 1.54184 Å, V = 899.6(7) Å3, Z = 2, ρ c = 1.476 g/cm3, M r = 399.75, F(000) = 416.0, R 1 = 0.0594, wR 2 = 0.1439 for 995 observed reflections with I > 2σ(I).  相似文献   

19.
The temperature dependence of the heat capacity C p o of the [(Me3Si)7C60]2 fullerene complex was measured for the first time using precision adiabatic vacuum calorimetry over the temperature range 6.7–340 K and high-accuracy differential scanning calorimetry at 320–635 K. For the most part, the error in the C p o values was about ±0.5%. An irreversible endothermic effect caused by the splitting of the dimeric bond between fullerene fragments and the thermal decomposition of the complex was observed at 448–570 K. The thermodynamic characteristics of this transformation were calculated and analyzed. Multifractal analysis of the low-temperature (T < 50 K) heat capacity was performed, and conclusions were drawn concerning the character of the heterodynamicity of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H o (T) ? H o (0), S o (T) ? S o (0), and G o (T) ? H o (0) over the temperature range from T → 0 to 445 K and estimate the standard entropy of formation of the compound from simple substances at 298.15 K. The standard thermodynamic properties of [(Me3Si)7C60]2 are compared with those of the (C60)2 dimer, the [(η6-Ph2)2Cr]+[C60]?? fulleride, and the initial C60 fullerene.  相似文献   

20.
The hydrothermal reaction of a mixture of V2O5, VCl3, 2,5-pyridinedicarboxylic acid and diluted H2SO4 for 68 h at 180°C gives a blue colored solution which yields prismatic blue crystals of IV 2 IV O2(SO4)2(H2O)6] (1) in 32% yield (based on V). Complex 1 was investigated by means of elemental analysis (C, H and S), TGA, FT-IR, manganometric titration, Single Crystal X-ray Diffraction Methods and also comparative antimicrobial activities. Crystal data for the compound: monoclinic space group P21/c and unit cell parameters are a = 7.3850(12) Å, b = 7.3990(7) Å, c = 12.229(2) Å, β = 108.976(12)° and Z = 2. Although structure of 1 as a natural mineral has been previously determined, this work covers new preparation method and full characterization of 1 along with comparison of antibacterial activity between 1 and the commercial vanadium(IV) oxide sulfate hydrate compounds, VOSO4 · xH2O (Riedel-de Haën and Alfa Aesar brand names). 1 was evaluated for the antimicrobial activity against gram-positive, gram-negative bacteria, yeasts and mould compared with the commercial VOSO4 · xH2O compounds. 1 showed weak activity against bacteria Bacillus cereus, Nocardia asteroides and yeast Candida albicans. A good antimicrobial activity was recorded against Cirtobacter freundii (15 mm). There are only a few reproducible well-defined vanadium(IV) starting materials to use for exploring the synthesis of new materials. VCl4, VO(acac)2, VOSO4 · xH2O and [V(IV)OSO4(H2O)4] · SO4 · [H2N(C2H4)2NH2] are common starting materials for such applications. In addition to these compounds, 1 can be used as an oxovanadium precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号