首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last ten years, the study and the search for new multiferroic materials have been a major challenge due to their potential applications in electronic technology. In this way, bismuth-containing perovskites (BiMO(3)), and particularly those in which the metal?M position is occupied by a magnetically active cation, have been extensively investigated as possible multiferroic materials. From the point of view of synthesis, only a few of the possible bismuth-containing perovskites can be prepared by conventional methods but at high pressures. Herein, the preparation of one of these potential multiferroic systems, the solid solution xBiMnO(3)-(1-x)PbTiO(3) by mechanosynthesis is reported. Note that this synthetic method allows the oxides with high x values, and more particularly the BiMnO(3) phase, to be obtained as nanocrystalline phases, in a single step and at room temperature without the application of external pressure. These results confirm that, in the case of Bi perovskites, mechanosynthesis is a good alternative to high-pressure synthesis. These materials have been studied from the point of view of their structural characteristics by precession electron diffraction and magnetic property measurements.  相似文献   

2.
3D and 2D hybrid perovskites, which have been known for more than 20 years, have emerged recently as promising materials for optoelectronic applications, particularly the 3D compound (CH3NH3)PbI3 (MAPI). The discovery of a new family of hybrid perovskites called d ‐MAPI is reported: the association of PbI2 with both methyl ammonium (MA+) and hydroxyethyl ammonium (HEA+) cations leads to a series of five compounds with general formulation (MA)1−2.48x(HEA)3.48x[Pb1−xI3−x]. These materials, which are lead‐ and iodide‐deficient compared to MAPI while retaining 3D architecture, can be considered as a bridge between the 2D and 3D materials. Moreover, they can be prepared as crystallized thin films by spin‐coating. These new 3D materials appear very promising for optoelectronic applications, not only because of their reduced lead content, but also in account of the large flexibility of their chemical composition through potential substitutions of MA+, HEA+, Pb2+ and I ions.  相似文献   

3.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

4.
Bismuth‐based hybrid perovskites are candidates for lead‐free and air‐stable photovoltaics, but poor surface morphologies and a high band‐gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth‐based thin‐film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution‐processed AgBi2I7 thin films are prepared by spin‐coating silver and bismuth precursors dissolved in n‐butylamine and annealing under an N2 atmosphere. X‐ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2I7 thin films exhibit dense and pinhole‐free surface morphologies with grains ranging in size from 200–800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.  相似文献   

5.
There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3?xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3?xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3?xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3?xClx and CH3NH3PbI3?xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively.  相似文献   

6.
A direct and convenient method has been developed for the synthesis of optically active pyrrolidines bearing a quaternary stereogenic center containing a CF3 group at the C‐3 position of the pyrrolidine ring. The synthesis system, CuI/Si‐FOXAP‐catalyzed exo‐selective 1,3‐dipolar cycloaddition of azomethine ylides with β‐CF3‐β,β‐disubstituted nitroalkenes, provides pyrrolidines with high diastereoselectivities (up to >98:2 d.r.) and excellent enantioselectivities (up to >99.9 ee) and performs well for a broad scope of substrates under mild conditions.  相似文献   

7.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

8.
Hybrid organo–metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite‐type complex (3‐pyrrolinium)(CdCl3) exhibits above‐room‐temperature ferroelectricity with a Curie temperature Tc=316 K and a spontaneous polarization Ps=5.1 μC cm?2. The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open‐circuit photovoltage for a 1 mm‐thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo–metal halide perovskites in photovoltaic research.  相似文献   

9.
Na‐ion batteries are becoming comparable to Li‐ion batteries because of their similar chemical characteristics and abundant sources of sodium. However, the materials production should be cost‐effective in order to meet the demand for large‐scale application. Here, a series of nanosized high‐performance cathode materials, Na3(VO1?xPO4)2F1+2x (0≤x≤1), has been synthesized by a solvothermal low‐temperature (60–120 °C) strategy without the use of organic ligands or surfactants. The as‐synthesized Na3(VOPO4)2F nanoparticles show the best Na‐storage performance reported so far in terms of both high rate capability (up to 10 C rate) and long cycle stability over 1200 cycles. To the best of our knowledge, the current developed synthetic strategy for Na3(VO1?xPO4)2F1+2x is by far one of the least expensive and energy‐consuming methods, much superior to the conventional high‐temperature solid‐state method.  相似文献   

10.
Novel cubic perovskites SrFe1?xNixO3 (0≤x≤0.5) with unusual high‐valence iron(IV) and nickel(IV) ions were obtained by high‐pressure and high‐temperature synthesis. Substantial magnetic moments of NiIV, which is intrinsically nonmagnetic with a nominal d6 electron configuration, were induced by the large magnetic moments of FeIV through orbital hybridization with oxygen. As a result, ferromagnetism with the transition temperature (Tc) above room temperature could be induced.  相似文献   

11.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

12.
This study describes, for the first time, the generation of a SF5‐substituted ester enolate from benzyl SF5‐acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3‐SF5‐quinolin‐2‐ones, 3‐SF5‐quinolines, and 3‐SF5‐pyridin‐2‐ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3‐ and t‐Bu‐analogues.  相似文献   

13.
Perovskite‐type phases SrFe1–xTixO3–y with 0.1 ≤ x ≤ 0.7 have been prepared from the oxides, and, in order to reach high oxygen contents and FeIV fractions, annealed at oxygen pressures of 60 MPa. The materials were characterised by powder x‐ray and neutron diffraction, 57Fe Mössbauer spectroscopy, and magnetic susceptibility measurements. All samples of the series crystallise in a cubic perovskite structure and reveal considerable oxygen deficiency. The Mössbauer parameters suggest that for x = 0.1, where the FeIV fraction is about 90%, the itinerant electronic state of SrFeO3 is essentially retained. In materials with larger x increasing amounts of TiIV and FeIII ions lead to a stronger localisation of the σ* (Fe 3 d – O 2 p) electrons. There is no evidence for a charge disproportionation of FeIV in any of the materials. Magnetic susceptibility measurements show a divergence of zero‐field cooled and field‐cooled data below a temperature Tm and deviations from Curie‐Weiss behaviour above Tm. The data are indicative of spin‐glass behaviour due to disorder and competing exchange interactions.  相似文献   

14.
The preparation, structures, and magnetic properties of a series of metal formate perovskites [CH3NH3][MnxZn1?x(HCOO)3] were investigated. The isostructural solid solution can be prepared in the complete range of x=0–1. The metal–organic perovskite structures consist of an anionic NaCl type [MnxZn1?x(HCOO)3?] framework with CH3NH3+ templates located in the nearly cubic cavities and forming hydrogen bonds to the framework. When the proportion of Mn increased (i.e., x changed from 0 to 1), the lattice dimensions and metal–oxygen and metal–metal distances show a slight, nonlinear increase because of the increased averaged metal ionic radius and the local structure distortion. Through the series, the magnetism changes from the long‐range ordering of spin‐canted antiferromagnetism for x≥0.40 to paramagnetism when x≤0.30, and the percolation limit was estimated to be xP=0.31(2) for this simple cubic lattice. In the low‐temperature region, enhancement of magnetization and the gradual decrease and final disappearance of coercive field, remnant magnetization, and spin‐flop field upon dilution were observed through this isotropic Heisenberg magnetic series. IR spectroscopic and thermal properties were also investigated.  相似文献   

15.
Two‐dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light‐emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self‐doping directed synthesis of ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 (1<n <∞) perovskites uses 2D (BA)2PbBr4 perovskites as the template with MA+ dopant. Ultrathin (BA)2(MA)n −1Pbn Br3n +1 perovskites are formed via an intercalation–merging mechanism, with thickness shrinking down to 4.2 nm and the lateral dimension to 57 μm. The ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 perovskites are potential materials for photodetectors with promising photoresponse and stability.  相似文献   

16.
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts.  相似文献   

17.
The unique optoelectronic properties and promising photovoltaic applications of organolead halide perovskites have driven the exploration of facile strategies to synthesize organometal halide perovskites and corresponding hybrid materials and devices. Currently, the preparation of CH3NH3PbBr3 perovskite nanowires, especially those with porous features, is still a great challenge. An efficient self‐template‐directed synthesis of high‐quality porous CH3NH3PbBr3 perovskite nanowires in solution at room temperature using the Pb‐containing precursor nanowires as both the sacrificial template and the Pb2+ source in the presence of CH3NH3Br and HBr is now presented. The initial formation of CH3NH3PbBr3 perovskite layers on the surface of the precursor nanowires and the following dissolution of the organic component of the latter led to the formation of mesopores and the preservation of the 1D morphology. Furthermore, the perovskite nanowires are potential materials for visible‐light photodetectors with high sensitivity and stability.  相似文献   

18.
In the present study, for the first time N‐(3‐silyl propyl) diethylene triamine N,N',N''‐tri‐sulfonic acid (SPDETATSA) was grafted on magnetic Fe3‐xTixO4 nanoparticles. The structure of the resulted nanoparticles was characterized based on Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analyses. The results confirmed the successful immobilization of sulfamic acid groups onto the magnetic support. These nanoparticles exhibited high catalytic activity as novel magnetically recyclable acid nanocatalyst in the synthesis of a diverse range of hexahydroquinolines through one‐pot tandem reactions in excellent yields. Also, this nanocatalyst performed satisfactory catalytic maintenance of activity for the synthesis of the reaction products after 4 rounds of recycling with no considerable loss of activity.  相似文献   

19.
Organic‐inorganic hybrid perovskites have attracted great attention over the last few years as potential light‐harvesting materials for efficient and cost‐effective solar cells. However, the use of lead iodide in state‐of‐the‐art perovskite devices may demonstrate an obstacle for future commercialization due to toxicity of lead. Herein we report on the synthesis and characterization of low dimensional tin‐based perovskites. We found that the use of symmetrical imidazolium‐based cations such as benzimidazolium (Bn) and benzodiimidazolium (Bdi) allow the formation of 2D perovskites with relatively narrow band gaps compared to traditional ‐NH3+ amino groups, with optical band gap values of 1.81 eV and 1.79 eV for Bn2SnI4 and BdiSnI4 respectively. Furthermore, we demonstrate that the optical properties in this class of perovskites can be tuned by formation of a quasi 2D perovskite with the formula Bn2FASn2I7. Additionally, we investigate the change in band gap in the mixed Sn/Pb solid solution Bn2SnxPbx?1I4. Devices fabricated with Bn2SnI4 show promising efficiencies of around 2.3 %.  相似文献   

20.
An asymmetric decarboxylative 1,4‐addition of malonic acid half thioesters (MAHTs) to 2‐aryl‐substituted vinyl sulfones has been developed, yielding adducts with excellent enantioselectivity (up to 97 % ee). In view of tuning pKa values, a quinine‐based benzyl‐substituted thiourea was designed and demonstrated as the most efficient catalyst. The enantioselective synthesis of 3‐monofluorinated analogues of 3‐methyl indanone and (+)‐turmerone has been accomplished from decarboxylative 1,4‐addition adducts with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号