首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

2.
Mesoporous carbon ceramic SiO2/50 wt % C (SBET=170 m2 g?1), where C is graphite, were prepared by the sol‐gel method. The materials were characterized using N2 sorption isotherms, scanning electron microscopy, and conductivity measurements. The matrix was used as support for the in situ immobilization of Mn(II) phthalocyanine (MnPc) on their surface. XPS was used to determine the Mn/Si atomic ratios of the MnPc‐modified materials. Pressed disk electrodes were prepared with the MnPc‐modified matrix, and tested as an electrochemical sensor for nitrite oxidation. The linear response range, sensitivity, detection limit and quantification limit were 0.79–15.74 µmol L?1, 17.31 µA L µmol?1, 0.02 µmol L?1 and 0.79 µmol L?1, respectively, obtained using cyclic voltammetry. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 1.7 % for 10 measurements of a solution of 12.63 µmol L?1 nitrite. The sensor employed to determine nitrite in sausage meat, river and lake water samples showed to be a promising tool for this purpose.  相似文献   

3.
Determination of cysteamine and tryptophan is described by electrochemical methods using p‐aminophenol‐multiwall carbon nanotubes paste electrode. Cysteamine and tryptophan in mixture can each be measured independently from each other with a potential difference of 600 mV. The results showed that the electrocatalytic currents increased linearly with cysteamine and tryptophan concentrations over the ranges 0.5–300 µmol L?1 and 10.0–650 µmol L?1, respectively. The detection limits for cysteamine and tryptophan are found to be 0.14 and 5.9 µmol L?1, respectively. The proposed method is successfully employed for the determination of cysteamine in both capsule and urine samples.  相似文献   

4.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

5.
A sensitive and selective method for the determination of Sb3+ based on the formation of its complexes with 8‐hydroxyquinoline (HQ) and 8‐hydroxyquinoline‐5‐sulfonic acid (HQS) is proposed. The best analytical conditions are: pH 5.4 and 2.2 for HQ and HQS, respectively; CHQ from 15.0 to 25.0 µmol L?1 and CHQS from 70.0 to 200.0 µmol L?1. The detection limits are 100.0 and 14.0 ng L?1 (tacc=30 s) for Sb3+ with HQ and HQS, respectively. The method using HQS as ligand has a 2.2‐fold higher sensitivity than that with HQ and the former was chosen for Sb3+ determination.  相似文献   

6.
An electrodeposition oxygen‐incorporated gold‐modified screen‐printed carbon electrode (AuOSPE) was fabricated to determine the sulfite content in hair waving products. The AuOSPE showed an electrocatalytic current for sulfite at +0.4 V (vs. Ag/AgCl). Compared with a gold screen‐printed electrode (AuSPE), the AuOSPE showed a higher electrocatalytic current. The increase in the electrocatalytic current was ascribed to the increase of the oxygen incorporated with gold atom on AuOSPE. The AuOSPE coupled with a flow injection analysis (FIA) system showed excellent oxidation current for sulfite in a 0.1 mol L?1 phosphate buffer solution (PBS), pH 6.0. The linear working range for determining the sulfite content was 0.05 to 1200 mg L?1 (0.625 µmol L?1 to 15.00 mmol L?1) with a calculated detection limit of 0.03 mg L?1 (0.375 µmol L?1) (DL, S/N=3). Relative standard deviations (RSD) of 3.03 %, 2.30 % and 4.26 % were calculated for consecutive injections (n=12) of 20, 300 and 900 mg L?1 sulfite, respectively. The amount of sulfite in two hair waving products was determined by the proposed method and a standard iodometric method. The recoveries ranged from 96.18 % to 105.61 %. The AuOSPE showed high sensitivity, selectivity, stability and reproducibility for sulfite.  相似文献   

7.
A simple procedure for the simultaneous determination of acetaminophen (AC) and ascorbic acid (AA) by differential pulse voltammetry (DPV) using a carbon nanotube paste electrode exploiting measures in cetylpyridinium bromide (CPB) medium is described. Under the best instrumental parameters of DPV, optimized by means of factorial design, the calibration plots in the range 100.0–700.0 µmol L?1 (r=0.993) and 39.4–146.3 µmol L?1 (r=0.995) with limits of detection of 7.1 and 2.1 µmol L?1, were achieved for AA and AC, respectively. The developed method was successfully applied for the AC and AA determination in pharmaceutical formulations, whose accuracy was attested by comparison with HPLC method.  相似文献   

8.
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone‐rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70 % (m/m) electrodes with linear dynamic ranges up to 7.0 µmol L?1 by differential pulse and up to 5.4 µmol L?1 by square wave voltammetry, with LODs of 0.12 and 0.078 µmol L?1, respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.  相似文献   

9.
《Electroanalysis》2006,18(5):517-520
The semi‐derivative technique was adopted to improve the resolution and surfactant was added to sample solution to enhance the sensitivity, α‐ and β‐naphthol isomers could be determined directly and simultaneously at glassy carbon electrode modified with carbon nanotubes network joined by Pt nanoparticles. In 0.1 mol L?1 HAc‐NaAc buffer solution (pH 5.8), the linear calibration ranges were 1.0×10?6 to 8.0×10?4 mol L?1 for both α‐ and β‐naphthols, with detection limits of 5.0×10?7 for α‐ and 6.0×10?7 mol L?1 for β‐naphthol. The amount of naphthol isomers in artificial wastewater has been tested with above method, and the recovery was from 98% to 103%.  相似文献   

10.
Platinum electrodes in microcylindrical and tubular arrangements were compared as working electrodes for amperometric detection of 2‐aminobiphenyl, 4‐aminobiphenyl, 1‐aminonaphthalene, and 2‐aminonaphthalene in HPLC. Factors influencing separation efficiency are favourable for microcylindrical arrangement while tubular arrangement exhibits higher sensitivities and lower limits of detection. These are in the range of 0.0078–0.027 µmol L?1 for tubular, and 0.11–0.42 µmol L?1 for microcylindrical arrangement. Further, a new method with nanomolar detection limits was proposed for determination of tested compounds in urine using solid phase extraction for preliminary separation and preconcentration of the analytes.  相似文献   

11.
AgSIE was used for the direct analysis of folic acid (FA), with a detection limit and lower level of quantitation of 6.8×10?10 mol L?1 and 2.3×10?8 mol L?1. The analysis in fresh and processed fruits was done without any sample pretreatment. In strawberry and acerola juices, FA concentration level values were below the method detection limit. FA was detectable in peach (77.7±0.4 µg L?1 and 64.4±0.5 µg L?1), Persian lime (45.4±0.7 µg L?1), pineapple Hawaii (66.2±0.4 µg L?1), pear pineapple (35.3±0.6 µg L?1), cashew (54.4±0.5 µg L?1), passion fruit (73.2±0.3 µg L?1), and apple (84.4±0.5 µg L?1).  相似文献   

12.
This work presents the electrochemical oxidation of the antioxidant astaxanthin on a glassy‐carbon electrode (GCE) and its amperometric determination in salmon samples using a batch‐injection analysis (BIA) system. The proposed BIA method consisted of 80‐µL a fast microliter injection of sample at 193 µL s?1 on the GCE immersed in the electrolyte, a mixture of acetone, dichloromethane, and water (80 : 10 : 10 v/v), containing 0.1 mol L?1 HClO4. Advantages include high precision (RSD of 2.4 %), sample throughput of 240 h?1, and low detection limit (0.3 µmol L?1 that corresponds to 0.1 µg g?1) for the analysis of acetone extracts of salmon samples. Recovery values between 83 and 97 % attested the accuracy of the method.  相似文献   

13.
A graphite electrode modified with silver (Ag‐CPE) has been applied to detect mercury(II) using differential pulse voltammetry (DPV). Under optimized conditions, the calibration curve is linear in the range from 5.0×10?8 mol L?1 to 1.0×10?4 mol L?1 of mercury(II). The detection limit was found to be 3.38×10?8 mol L?1 with a relative standard deviation (RSD) of 2.25 % (n=8). The proposed method was successfully applied for the detection of mercury(II) in leachate samples. The Ag‐CP composites were characterized using X‐ray diffraction (XRD), BET adsorption analysis and scanning electron microscopy (SEM).  相似文献   

14.
N‐(3,4‐dihydroxyphenethyl)‐3,5‐dinitrobenzamide modified multiwall carbon nanotubes paste electrode was used as a voltammetric sensor for oxidation of penicillamine (PA), uric acid (UA) and tryptophan (TP). In a mixture of PA, UA and TP, those voltammograms were well separated from each other with potential differences of 300, 610, and 310 mV, respectively. The peak currents were linearly dependent on PA, UA and TP concentrations in the range of 0.05–300, 5–420, and 1.0–400 µmol L?1, with detection limits of 0.021, 2.0, and 0.82 µmol L?1, respectively. The modified electrode was used for the determination of those compounds in real samples.  相似文献   

15.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

16.
This study reports on the synthesis, characterization, and performance of a new dinuclear cobalt(III) thioxanthate complex of [Co2(μ-SC2H4OH)2(HOC2H4SCS2)4] as an electrocatalyst for trichloroacetic acid (TCA) and bromate reduction. Its structure was characterized by X-ray crystallography and elemental analysis. The structure contains two different anions of 2-sulfanylethanol thioxanthate and 2-sulfanylethanol. The electrochemical behavior and the electrocatalysis of the cobalt complex bulk-modified carbon paste electrode have been studied by cyclic voltammetry. It shows good electrocatalytic activities toward the reduction of TCA and bromate. The values for the detection limit and the sensitivity are 0.06 µmol L?1 and 19.40 µA µmol L?1 for TCA detection and 0.01 µmol L?1 and 177.6 µA µmol L?1 for bromate detection, respectively. This modified electrode exhibits good reproducibility, high stability, low detection limit and technical simplicity, and allows a possibility for rapid preparation, which is important for practical applications.  相似文献   

17.
The present work describes the development of a selective and sensitive voltammetric sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ), based on a glassy carbon (GC) electrode modified with manganese phthalocyanine azo‐macrocycle (MnPc) adsorbed on multiwalled carbon nanotubes (MWCNT). Scanning electron microscopy and scanning electrochemical microscopy were used to characterize the composite material (MnPc/MWCNT) on the glassy carbon electrode surface. The modified electrode showed excellent electrochemical activity towards the simultaneous oxidation and reduction of CC and HQ. On the MnPc/MWCNT/GC electrode, both CC and HQ can generate a pair of quasi‐reversible and well‐defined redox peaks. Under optimized experimental and operational conditions, the cathodic peak currents were linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.095 and 0.041 µmol L?1, respectively. The anodic peak currents were also linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.096 and 0.048 µmol L?1, respectively. The proposed method was effectively applied for the simultaneous detection of hydroquinone and catechol in water samples and the results were in agreement with those obtained by a comparative method described in the literature.  相似文献   

18.
This work reports the highly‐sensitive amperometric determination of free glycerol in biodiesel at a gold electrode adapted in a flow‐injection analysis (FIA) cell. The amperometric method involved the continuous application of three sequential pulses to the working electrode (+250 mV, +700 mV, and ?200 mV, for 100 ms each). This sequence of potential pulses eliminated electrode passivation and dramatically increased the analytical signal. The proposed FIA‐amperometric method presented low relative standard deviation between injections (1.5 %, n=15), high analytical frequency (85 h?1), satisfactory recovery values (93–118 %) for spiked samples, wide linear range (from 1 to 300 µmol L?1), and low detection limit (0.5 µmol L?1).  相似文献   

19.
A cobalt oxide nanocluster/overoxidized polypyrrole composite film electrochemical sensing interface was fabricated by two step electrochemical method. The electrochemical properties and electrocatalytic activity of the resulting modified electrode were also studied carefully. The results showed that this modified electrode exhibited good stability, good anti‐interference ability, as well as high electrocatalytic activity to the oxidation of glucose. The linear range for the amperometric determination of glucose was 2.0×10?7–2.4×10?4 mol L?1 and 2.4×10?4–1.4×10?3 mol L?1 with a detection limit of 5.0×10?8 mol L?1 (S/N=3), respectively. The sensitivity was 1024 µA mM?1 cm?2.  相似文献   

20.
A new combination bismuth bulk electrode allowing potentiostatic control to be maintained in a suspended sample drop is described. The electrode was tested by adsorptive constant‐current stripping chronopotentiometry for iron(III) using Solochrome Violet RS. Optimum conditions were similar to those established with mercury‐based electrodes. With an electropolishing scheme, a reproducibility better than 2 % (n=54) was attainable. The limit of detection was 0.6 µg L?1 in deoxygenated samples. A partial least squares calibration gave a result of 972±78 µg L?1 (95 %, n=5) for a 1000±5 µg L?1 iron reference solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号