首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enantioselective construction of axially chiral compounds by electrophilic carbothiolation of alkynes is disclosed for the first time. This enantioselective transformation is enabled by the use of a Ts‐protected bifunctional sulfide catalyst and Ms‐protected ortho‐alkynylaryl amines (Ts=tosyl; Ms=mesyl). Both electrophilic arylthiolating and electrophilic trifluoromethylthiolating reagents are suitable for this reaction. The obtained products of axially chiral vinyl–aryl amino sulfides can be easily converted into biaryl amino sulfides, biaryl amino sulfoxides, biaryl amines, vinyl–aryl amines, and other valuable difunctionalized compounds.  相似文献   

2.
An efficient method for the synthesis of tertiary amines through a gold(I)‐catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %), a variety of secondary amines bearing electron‐deficient and electron‐rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron‐deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one‐pot reaction from simple and readily available starting materials without the need of isolation of air/moisture‐sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI‐MS, isotope labeling studies, and DFT calculations on this gold(I)‐catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)–alkyne intermediate is more likely than a gold(I)–amine intermediate, a three‐coordinate gold(I) intermediate, or a dinuclear gold(I)–alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)‐coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments.  相似文献   

3.
A novel 2,6‐anthrylene‐linked bis(m‐terphenylcarboxylic acid) strand ( 1 ) self‐associates into a racemic double‐helix. In the presence of chiral mono‐ and diamines, either a right‐ or left‐handed double‐helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face‐selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo‐ (anti or syn) and enantiodifferentiating way to afford the chiral anti‐photodimer with up to 98 % enantiomeric excess when (R)‐phenylethylamine was used as a chiral double‐helix inducer. The resulting optically active anti‐photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.  相似文献   

4.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

5.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   

6.
Chiral nonracemic N‐Cbz‐protected propargylic amines have been prepared by the addition of terminal alkynes to imines generated in situ from α‐amido sulfones in the presence of diethylzinc and BINOL‐type ligands as catalysts. The reactions give good yields and high enantioselectivities (ee values up to 95 %) for a good number of aromatic and heteroaromatic α‐amido sulfones and alkynes.  相似文献   

7.
The aza‐Michael addition reaction is a vital transformation for the synthesis of functionalized chiral amines. Despite intensive research, enantioselective aza‐Michael reactions with alkyl amines as the nitrogen donor have not been successful. We report the use of chiral N‐heterocyclic carbenes (NHCs) as noncovalent organocatalysts to promote a highly selective aza‐Michael reaction between primary alkyl amines and β‐trifluoromethyl β‐aryl nitroolefins. In contrast to classical conjugate‐addition reactions, a strategy of HOMO‐raising activation was used. Chiral trifluoromethylated amines were synthesized in high yield (up to 99 %) with excellent enantioselectivity (up to 98 % ee).  相似文献   

8.
An efficient synthesis of N‐substituted indole derivatives was realized by combining the Pd‐catalyzed one‐pot multicomponent coupling approach with cleavage of the C(sp3)?N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene–phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1‐bromo‐2‐iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4‐methylpiperidine, 1‐methylpiperazine, 2‐methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3‐b]indole.  相似文献   

9.
《中国化学会会志》2017,64(7):777-785
A series of novel N ‐alkylcarbazol–propargylamine hybrids were designed and synthesized by CuIBr ‐catalyzed A3 ‐coupling of N ‐octylcarbazol‐3‐carbaldehyde, amines, and alkynes. The tri‐substituted propargyl amines decorated with carbazole moiety were obtained under solvent‐free conditions in good to moderate yields. Furthermore, the scope of the method was studied, which was found to be applicable to primary aliphatic and aromatic amines. Also, a large variety of substituents both on alkynes and anilines are well tolerated.  相似文献   

10.
A practical method for the synthesis of α‐chiral amines by alkylation of amines with alcohols in the absence of any transition‐metal catalysts has been developed. Under the co‐catalysis of a ketone and NaOH, racemic secondary alcohols reacted with Ellman's chiral tert‐butanesulfinamide by a hydrogen autotransfer process to afford chiral amines with high diastereoselectivities (up to >99:1). Broad substrate scope and up to a 10 gram scale production of chiral amines were demonstrated. The method was applied to the synthesis of chiral deuterium‐labelled amines with high deuterium incorporation and optical purity, including examples of chiral deuterated drugs. The configuration of amine products is found to be determined solely by the configuration of the chiral tert‐butanesulfinamide regardless of that of alcohols, and this is corroborated by DFT calculations. Further mechanistic studies showed that the reaction is initiated by the ketone catalyst and involves a transition state similar to that proposed for the Meerwein–Ponndorf–Verley (MPV) reduction, and importantly, it is the interaction of the sodium cation of the base with both the nitrogen and oxygen atoms of the sulfinamide moiety that makes feasible, and determines the diastereoselectivity of, the reaction.  相似文献   

11.
An enantioselective three‐component reaction of aldehydes, amines, and alkynes in water by using a bis(imidazoline)–CuI catalysts having a hydrophobic substituent and sodium dodecyl sulfate as a surfactant was developed. The reaction was applied to a broad range of aldehydes and alkynes to give optically active propargylamines with excellent yields (up to 99 %) and enantiomeric excesses (up to 99 % ee).  相似文献   

12.
Enantiomerically pure chiral amines are of increasing importance and commercial value in the fine chemical, pharmaceutical, and agrochemical industries. Here, we describe the straightforward synthesis of chiral amines by combining the atom-economic and environmentally friendly hydroamination of alkynes with an enantioselective hydrogenation of in situ generated imines by using inexpensive hydrogen. By following this novel approach, a wide range of terminal alkynes can be reductively hydroaminated with primary amines including alkyl-, and arylalkynes as well as aryl and heteroaryl amines. Excellent yields and selectivities up to 94?%?ee and 96?% isolated yield were obtained.  相似文献   

13.
Twofold C?H annulation of readily available formamides and alkynes without built‐in chelating groups was achieved. Ni?Al bimetallic catalysis enabled by a bulky BINOL‐derived chiral secondary phosphine oxide (SPO) ligand proved to be critical for high reactivity and high selectivity. This reaction uses readily available formamides as starting materials and provides a concise synthetic pathway to a broad range of chiral ferrocenes in 40–98 % yield and 93–99 % ee.  相似文献   

14.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

15.
The enantioselective allylic amination of Morita‐Baylis‐Hillman acetates catalyzed by chiral cyclohexane‐based thiourea‐phosphine catalysts was investigated. In the presence of 20 mol% rosin‐derived thiourea‐phosphine 3j , the chiral amines were obtained in up to 88% yield and up to 85% ee.  相似文献   

16.
A chiral aluminum complex controlled, enantioselective nickel‐catalyzed domino reaction of aryl nitriles and alkynes proceeding by C?CN bond activation was developed. The reaction provides various indenes, bearing chiral all‐carbon quaternary centers, under mild reaction conditions in yields of 32 to 91 % and ee values within the 73–98 % range. The reaction mechanism and aspects of stereocontrol were investigated by DFT calculations.  相似文献   

17.
An asymmetric palladium and copper co‐catalyzed Heck/Sonogashira reaction between o‐iodoacrylanilides and terminal alkynes to synthesize chiral oxindoles was developed. In particular, a wide range of CF3‐substituted o‐iodoacrylanilides reacted with terminal alkynes, affording the corresponding chiral oxindoles containing trifluoromethylated quaternary stereogenic centers in high yields with excellent enantioselectivities (94–98 % ee). This asymmetric Heck/Sonogashira reaction provides a general approach to access oxindole derivatives containing quaternary stereogenic centers including CF3‐substituted ones.  相似文献   

18.
A highly efficient enantioselective [2+2] cycloaddition between alkynones and cyclic enol silyl ethers was developed by using a chiral N,N′‐dioxide‐zinc(II) complex as a catalyst. This method functions well for a variety of terminal alkynes as well as cyclic enol silyl ethers, with good to excellent enantioselectivity (up to 97 % ee). This is also the first successful example for the catalytic enantioselective [2+2] cycloaddition of internal alkynes with cyclic enol silyl ethers to give fully substituted cyclobutenes. Meanwhile, the desired cyclobutene product can easily be transformed into fused cyclobutane derivatives.  相似文献   

19.
The asymmetric synthesis of alkynyl and monofluoroalkenyl isoindolinones from N‐methoxy benzamides and α,α‐difluoromethylene alkynes is enabled by C?H activation with a chiral CpRhIII catalyst. Remarkably, product formation is solvent‐dependent; alkynyl isoindolinones are afforded in MeOH (up to 86 % yield, 99.6 % ee) whereas monofluoroalkenyl isoindolinones are generated in iPrCN (up to 98:2 Z/E, 93 % yield, 86 % ee). Mechanistic studies revealed chiral allene and E‐configured alkenyl rhodium species as reaction intermediates. The latter is transformed into the corresponding Z‐configured monofluoroalkene upon protonation in the iPrCN system and into an alkyne by an unusual anti β‐F elimination in the MeOH system. Notably, kinetic resolution processes occur in this reaction. Despite the moderate enantiocontrol for the formation of the chiral allene, the Z‐monofluoroalkenyl isoindolinones and alkynyl isoindolinones were obtained in good enantiopurities by one or two sequential kinetic resolution processes.  相似文献   

20.
Highly enantioselective rhodium‐catalyzed addition of arylboroxines to N‐unprotected ketimines is realized for the first time by employing chiral BIBOP‐type ligands with a Rh loading as low as 1 mol %. A range of chiral α‐trifluoromethyl‐α,α‐diaryl α‐tertiary amines or 3‐amino‐3‐aryloxindoles were formed with excellent ee values and yields by employing either WingPhos or PFBO‐BIBOP as the ligand. The method has enabled an efficient enantioselective synthesis of cipargamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号