首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much effort has been devoted to investigating the unusual properties of the π electrons in Möbius cyclacenes, which are localized in a special region. However, the localized π electrons are a disadvantage for applications in optoelectronics, because intramolecular charge transfer is limited. This raises the question of how the intramolecular charge transfer of a Möbius cyclacene with clearly localized π electrons can be enhanced. To this end, [8]Möbius cyclacene ([8]MC) is used as a conjugated bridge in a donor–π‐conjugated bridge–acceptor (D–π–A) system, and NH2‐6‐[8]MC‐10‐NO2 exhibits a fascinating spiral charge‐transfer transition character that results in a significant difference in dipole moments Δμ between the ground state and the crucial excited state. The Δμ value of 6.832 D for NH2‐6‐[8]MC‐10‐NO2 is clearly larger than that of 0.209 D for [8]MC. Correspondingly, the first hyperpolarizability of NH2‐6‐[8]MC‐10‐NO2 of 12 467 a.u. is dramatically larger than that of 261 a.u. for [8]MC. Thus, constructing a D–π–A framework is an effective strategy to induce greater spiral intramolecular charge transfer in MC although the π electrons are localized in a special region. This new insight into the properties of π electrons in Möbius cyclacenes may provide valuable information for their applications in optoelectronics.  相似文献   

2.
3.
4.
The geometries and electronic properties of tubiform [n] boron nitride clusters entrapping Li2 (Li2@BN‐cluster(n,0); n=4–8), obtained by doping BN‐cluster(n,0) with Li2 molecules, are investigated by means of DFT. The effects of tube diameter n on the dipole moment μ0, static polarizability α0, and first hyperpolarizability β0 are elucidated. Both the dipole moment and polarizability increase with increasing tube diameter, whereas variation of the static first hyperpolarizability with tube diameter is not monotonic; β0 follows the order 1612 (n=4)<3112 (n=5)<5534 (n=7)<8244 (n=6)<12 282 a.u. (n=8). In addition, the natural bond orbital (NBO) charges show that charge transfer takes place from the Li2 molecule to the BN cluster, except for BN‐cluster(8,0) with larger tube diameter. Since the large‐diameter tubular BN‐cluster(8,0) can trap the excess electrons of the Li2 molecule, Li2@BN‐cluster(8,0) can be considered to be a novel electride compound.  相似文献   

5.
6.
7.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

8.
The similar shape and electronic structure of the radical anions of 1,2,4,5‐tetracyanopyrazine (TCNP) and 1,2,4,5‐tetracyanobenzene (TCNB) suggest a similar relative orientation for their long, multicenter carbon?carbon bond in π‐[TCNP]22? and in π‐[TCNB]22?, in good accord with the Maximin Principle predictions. Instead, the two known structures of π‐[TCNP]22? have a D2h(θ=0°) and a C2(θ=30°) orientation (θ being the dihedral angle that determines the rotation of one radical anion relative to the other along the axis that passes through center of the two six‐membered rings). The only known π‐[TCNB]22? structure has a C2(θ=60°) orientation. The origin of these preferences was investigated for both dimers by computing (at the RASPT2/RASSCF(30,28) level) the variation with θ of the interaction energy (Eint) and the variation of the Eint components. It was found that: 1) a long, multicenter bond exists for all orientations; 2) the Eint(θ) angular dependence is similar in both dimers; 3) for all orientations the electrostatic component dominates the value of Eint(θ), although the dispersion and bonding components also play a relevant role; and 4) the Maximin Principle curve reproduces well the shape of the Eint(θ) curve for isolated dimers, although none of them reproduce the experimental preferences. Only after the (radical anion).? ??? cation+ interactions are also included in the model aggregate are the experimental data reproduced computationally.  相似文献   

9.
10.
11.
Although the organic dyes based on excited state intramolecular proton transfer (ESIPT) mechanism have attracted significant attention, the structure‐property relationship of ESIPT dyes needs to be further exploited. In this paper, three series of ethynyl‐extended regioisomers of 2‐(2′‐hydroxyphenyl)benzothiazole (HBT), at the 3′‐, 4′‐ and 6‐positions, respectively, have been synthesized. Changes in the absorption and emission spectra were correlated with the position and electronic nature of the substituent groups. Although 4′‐ and 6‐substituted HBT derivatives exhibited absorption bands at longer wavelengths, the keto‐emission of 3′‐substituted HBT derivatives was found at a substantially longer wavelength. The gradual red‐shifted fluorescence emission was found for 3′‐substituted HBT derivatives where the electron‐donating nature of substituent group increased, which was opposite to what was observed for 4′‐ and 6‐substituted HBT derivatives. The results derived from the theoretical calculations were in conformity with the experimental observations. Our study could potentially provide experimental and theoretical basis for designing novel ESIPT dyes that possess unique fluorescent properties.  相似文献   

12.
13.
A terthiazole‐based molecular switch associating 6π electrocyclization, excited state intramolecular proton transfer (ESIPT), and strong metal binding capability was prepared. The photochemical and photophysical properties of this molecule and of the corresponding nickel and copper complexes were thoroughly investigated by steady‐state and ultrafast absorption spectroscopy and rationalized by DFT/TDDFT calculations. The switch behaves as a biphotochrome with time‐dependent photochemical outcome and displays efficient ESIPT‐based fluorescence photoswitching. Both photochemical reactions are suppressed by nickel or copper metalation, and the main factors contributing to the quenching of the electrocyclization are discussed.  相似文献   

14.
Quadrupolar oligothiophene chromophores composed of four to five thiophene rings with two terminal (E)‐dimesitylborylvinyl groups ( 4 V – 5 V ), and five thiophene rings with two terminal aryldimesitylboryl groups ( 5 B ), as well as an analogue of 5 V with a central EDOT ring ( 5 VE ), have been synthesized via Pd‐catalyzed cross‐coupling reactions in high yields (66–89 %). Crystal structures of 4 V , 5 B , bithiophene 2 V , and five thiophene‐derived intermediates are reported. Chromophores 4 V , 5 V , 5 B and 5 VE have photoluminescence quantum yields of 0.26–0.29, which are higher than those of the shorter analogues 1 V – 3 V (0.01–0.20), and short fluorescence lifetimes (0.50–1.05 ns). Two‐photon absorption (TPA) spectra have been measured for 2 V – 5 V , 5 B and 5 VE in the range 750–920 nm. The measured TPA cross‐sections for the series 2 V – 5 V increase steadily with length up to a maximum of 1930 GM. We compare the TPA properties of 2 V – 5 V with the related compounds 5 B and 5 VE , giving insight into the structure–property relationship for this class of chromophore. DFT and TD‐DFT results, including calculated TPA spectra, complement the experimental findings and contribute to their interpretation. A comparison to other related thiophene and dimesitylboryl compounds indicates that our design strategy is promising for the synthesis of efficient dyes for two‐photon‐excited fluorescence applications.  相似文献   

15.
16.
17.
18.
The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum.  相似文献   

19.
The electrochemical, UV/Vis–NIR absorption, and emission‐spectroscopic features of (TBA+)( 1 ) and the corresponding neutral complex 1 were investigated (TBA+=tetrabutylammonium; 1 =[AuIII(Pyr,H‐edt)2]; Pyr,H‐edt2−=pyren‐1‐yl‐ethylene‐1,2‐dithiolato). The intense electrochromic NIR absorption (λmax=1432 nm; ε=13000 M −1 cm−1 in CH2Cl2) and the potential‐controlled visible emission in the range 400–500 nm, the energy of which depends on the charge of the complex, were interpreted on the grounds of time‐dependent DFT calculations carried out on the cis and trans isomers of 1 , 1 , and 1 2−. In addition, to evaluate the nonlinear optical properties of 1 x (x=0, 1), first static hyperpolarizability values βtot were calculated (βtot=78×10−30 and 212×10−30 esu for the cis isomer of 1 and 1 , respectively) and compared to those of differently substituted [Au(Ar,H‐edt)2]x gold dithiolenes [Ar=naphth‐2‐yl ( 2 ), phenyl ( 3 ); x=0, 1].  相似文献   

20.
A series of combinations of thiophene and vinyl/butadiene were investigated by ab initio and DFT methods to explore their electronic structures and charge transfer properties. The results show that increasing thiophene ring and vinyl number is a rational strategy to raise the HOMO energy levels and lower the LUMO energy levels. Moving the vinyl from the periphery to the core has the slight effect on the HOMO and LUMO energy levels. Furthermore, replacing the middle vinyl and end‐capped vinyl of 3b (T5V4) with the butadiene can lower LUMO energy levels and then facilitate the electron injection. Above all, the close hole and electron reorganization energies (λh and λe) are observed from these compounds. However, the λes are smaller than their respective λhs in some compounds, which is relatively rare in organic materials. Especially, the promising ambipolar material 3c (T5B4) is recommended theoretically for possessing the equivalent minimum λh (0.24 eV) and λe (0.24 eV). The absorption wavelengths exhibit red shifts with the increasing of the thiophene ring and the vinyl number under the same configuration, which correspond to the reverse order of ΔEH‐L and Eg. The linear relationships are found between experimental lowest singlet excited energies (Eexp) with theoretical values ΔEH‐L and Eg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号