首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

2.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

3.
Although similar to carbon monoxide, the chemistry of homoleptic nitrogen monoxide complexes is fundamentally unexplored compared to their carbonyl analogues. Herein we report the synthesis of the first truly homoleptic transition‐metal nitrosyl cation as the salt of the weakly coordinating anions (WCAs) [Al(ORF)4]? and [F{Al(ORF)3}2]? (RF=C(CF3)3). These salts are easily accessible in good yields, phase pure, and were fully characterized by IR/Raman, NMR and UV/Vis spectroscopy as well as single‐crystal and powder X‐ray diffraction. They may serve as unprecedented simple model systems for theoretical and experimental studies of nitrosyl complexes.  相似文献   

4.
Sterically unprotected thiophene/phenylene co‐oligomer radical cation salts BPnT.+[Al(ORF)4]? (ORF=OC(CF3)3, n=1–3) have been successfully synthesized. These newly synthesized salts have been characterized by UV/Vis‐NIR absorption and EPR spectroscopy, and single‐crystal X‐ray diffraction analysis. Their conductivity increases with chain length. The formed meso‐helical stacking by cross‐overlapping radical cations of BP2T.+ is distinct from previously reported face‐to‐face overlaps of sterically protected (co‐)oligomer radical cations.  相似文献   

5.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

6.
The potential of a dicationic strontium ansa-arene complex for Lewis acid catalysis has been explored. The key to its synthesis was a simple salt metathesis from SrI2 and 2 Ag[Al(ORF)4], giving the base-free strontium-perfluoroalkoxyaluminate Sr[Al(ORF)4]2 (ORF=OC(CF3)3). Addition of an ansa-arene yielded the highly Lewis acidic, dicationic strontium ansa-arene complex. In preliminary experiments, the complex was successfully applied as a catalyst in CO2-reduction to CH4 and a surprisingly controlled isobutylene polymerization reaction.  相似文献   

7.
Upon reaction of gaseous Me3SiF with the in situ prepared Lewis acid Al(ORF)3, the stable ion‐like silylium compound Me3Si‐F‐Al(ORF)3 1 forms. The Janus‐headed 1 is a readily available smart Lewis acid that differentiates between hard and soft nucleophiles, but also polymerizes isobutene effectively. Thus, in reactions of 1 with soft nucleophiles (Nu), such as phosphanes, the silylium side interacts in an orbital‐controlled manner, with formation of [Me3Si?Nu]+ and the weakly coordinating [F?Al(ORF)3] or [(FRO)3Al‐F‐Al(ORF)3] anions. If exchanged for hard nucleophiles, such as primary alcohols, the aluminum side reacts in a charge‐controlled manner, with release of FSiMe3 gas and formation of the adduct R(H)O?Al(ORF)3. Compound 1 very effectively initiates polymerization of 8 to 21 mL of liquid C4H8 in 50 mL of CH2Cl2 already at temperatures between ?57 and ?30 °C with initiator loads as low as 10 mg in a few seconds with 100 % yield but broad polydispersities.  相似文献   

8.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

9.
Attempts to prepare previously unknown simple and very Lewis acidic [RZn]+[Al(ORF)4]? salts from ZnR2, AlR3, and HO?RF delivered the ion‐like RZn(Al(ORF)4) (R=Me, Et; RF=C(CF3)3) with a coordinated counterion, but never the ionic compound. Increasing the steric bulk in RZn+ to R=CH2CMe3, CH2SiMe3, or Cp*, thus attempting to induce ionization, failed and led only to reaction mixtures including anion decomposition. However, ionization of the ion‐like EtZn(Al(ORF)4) compound with arenes yielded the [EtZn(arene)2]+[Al(ORF)4]? salts with arene=toluene, mesitylene, or o‐difluorobenzene (o‐DFB)/toluene. In contrast to the ion‐like EtZn(η3‐C6H6)(CHB11Cl11), which co‐crystallizes with one benzene molecule, the less coordinating nature of the [Al(ORF)4]? anion allowed the ionization and preparation of the purely organometallic [EtZn(arene)2]+ cation. These stable materials have further applications as, for example, initiators of isobutene polymerization. DFT calculations to compare the Lewis acidities of the zinc cations to those of a large number of organometallic cations were performed on the basis of fluoride ion affinity. The complexation energetics of EtZn+ with arenes and THF was assessed and related to the experiments.  相似文献   

10.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

11.
Upon reacting SeCl4 with Me3Si–F–Al(ORF)3, the selenonium salt SeMeCl2[al‐f‐al] ( 1 ) {[al‐f‐al] = [F[Al(OC(CF3)3)3]2]} was obtained and characterized by NMR, IR, and Raman spectroscopy as well as single crystal XRD experiments. Despite the [SeX3]+ (X = F, Cl, Br, I) and [SeR3]+ salts (R = aliphatic organic residue) being well known and thoroughly studied, the mixed cations are scarce. The only previous example of a salt with the [SeMeCl2]+ cation is SeMeCl2[SbCl6], which was never structurally characterized and is unstable in solution over hours. Only 1H‐NMR studies and IR spectra of this compound are known. The unexpected use of Me3Si–F–Al(ORF)3 as a methylating agent was investigated via DFT calculations and NMR experiments of the reaction solution. The reaction of SeCl3[al‐f‐al] with Me3Si‐Cl at room temperature in CH2Cl2 proved to yield the same product with Me3Si–Cl acting as a methylating agent.  相似文献   

12.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

13.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

14.
The syntheses of the homoleptic bis(arene) niobium cations [Nb(arene)2]+ (arene = C6H3Me3, C6H5Me) with 16 valence electrons and heteroleptic arene-carbonyl cations [(CO)Nb(arene)2]+ (arene = C6H3Me3, C6H5Me) and [(arene)M(CO)4]+ (arene = C6H3Me3, C6H6) obeying 18 valence electrons are described. Stabilization of these complexes was achieved by using the weakly coordinating anions [Al(ORF)4] or [F{Al(ORF)3}2] (RF = C(CF3)3). The limits of two synthesis routes starting from neutral Nb(arene)2 (arene = C6H3Me3, C6H5Me) or [NEt4][M(CO)6] (M = Nb, Ta) were investigated. All compounds were analyzed by single crystal X-ray determination, vibrational and NMR spectroscopy. DFT calculations were executed to support the experimental data.  相似文献   

15.
Salts of the tetrakis(pentafluoroethyl)aluminate anion [Al(C2F5)4] were obtained from AlCl3 and LiC2F5. They were isolated with different counter-cations and characterized by NMR and vibrational spectroscopy and mass spectrometry. Degradation of the [Al(C2F5)4] ion was found to proceed via 1,2-fluorine shifts and stepwise loss of CF(CF3) under formation of [(C2F5)4−nAlFn] (n=1–4) as assessed by NMR spectroscopy and mass spectrometry and supported by results of DFT calculations. In addition, the [(C2F5)AlF3] ion was structurally characterized.  相似文献   

16.
A series of gold acetonitrile complexes [Au(NCMe)2]+[WCA]? with weakly coordinating counterions (WCAs) was synthesized by the reaction of elemental gold and nitrosyl salts [NO]+[WCA]? in acetonitrile ([WCA]? = [GaCl4]?, [B(CF3)4]?, [Al(ORF)4]?; RF = C(CF3)3). In the crystal structures, the [Au(NCMe)2]+ units appeared as monomers, dimers, or chains. A clear correlation between the aurophilicity and the coordinating ability of counterions was observed, with more strongly coordinating WCAs leading to stronger aurophilic contacts (distances, C?N stretching frequencies of [Au(NCMe)2]+ units). An attempt to prepare [Au(L)2]+ units, even with less weakly basic solvents like CH2Cl2, led to decomposition of the [Al(ORF)4]? anion and formation of [NO(CH2Cl2)2]+[F(Al(ORF)3)2]?. All nitrosyl reagents [NO]+[WCA]? were generated according to an optimized procedure and were thoroughly characterized by Raman and NMR spectroscopy. Moreover, the to date unknown species [NO]+[B(CF3)3CN]? was prepared. Its reaction with gold unexpectedly produced [Au(NCMe)2]+[Au(NCB(CF3)3)2]?, in which the cyanoborate counterion acts as an anionic ligand itself. Interestingly, the auroborate anion [Au(NCB(CF3)3)2]? behaves as a weakly coordinating counterion, which becomes evident from the crystallographic data and the vibrational spectral characteristics of the [Au(NCMe)2]+ cation in this complex. Ligand exchange in the only room temperature stable salt of this series, [Au(NCMe)2]+[Al(ORF)4]?, is facile and, for example, [Au(PPh3)(NCMe)]+[Al(ORF)4]? can be selectively generated. This reactivity opens the possibility to generate various [AuL1L2]+[Al(ORF)4]? salts through consecutive ligand‐exchange reactions that offer access to a huge variety of AuI complexes for gold catalysis.  相似文献   

17.
The small di- and triatomic molecules [SN]+ and [SNS]+ have shown versatile chemistries and [SNS]+ is an important starting reagent for many sulfur-nitrogen radicals. However, their chemistry is limited to the more polar solvents (e.g. SO2). In this work an attempt is made to increase their solubility in less polar solvents by exchange of the usual [MF6] (M = As, Sb) anions by the large and weakly coordinating [Al(OC(CF3)3)4]. As expected the metathesis reactions of [SN][AsF6] and [SNS][SbF6] with Li[Al(OC(CF3)3)4] in liquid sulfur dioxide resulted in the formation of the insoluble Li[SbF6], which is the driving force for these metathesis reactions. The characterization of the compounds by IR and multinuclear NMR revealed that [SNS]+ formed a [Al(OC(CF3)3)4] salt in a clean reaction. A preliminary crystal structure of [SNS][Al(OC(CF3)3)4] is presented. The solubility of [SNS][Al(OC(CF3)3)4] in CH2Cl2 is significantly increased with respect to the corresponding [MF6] salts, and potentially opens up new areas of [SNS]+ chemistry. The reaction of the more reactive [SN]+ with Li[Al(OC(CF3)3)4] was less clear. Multinuclear NMR and IR spectra were consistent with the formation of [SN][Al(OC(CF3)3)4], which also showed significant decomposition.  相似文献   

18.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

19.
Schnöckel's [(AlCp*)4] and Jutzi's [SiCp*][B(C6F5)4] (Cp*=C5Me5) are landmarks in modern main-group chemistry with diverse applications in synthesis and catalysis. Despite the isoelectronic relationship between the AlCp* and the [SiCp*]+ fragments, their mutual reactivity is hitherto unknown. Here, we report on their reaction giving the complex salts [Cp*Si(AlCp*)3][WCA] ([WCA]=[Al(ORF)4] and [F{Al(ORF)3}2]; RF=C(CF3)3). The tetrahedral [SiAl3]+ core not only represents a rare example of a low-valent silicon-doped aluminium-cluster, but also—due to its facile accessibility and high stability—provides a convenient preparative entry towards low-valent Si−Al clusters in general. For example, an elusive binuclear [Si2(AlCp*)5]2+ with extremely short Al−Si bonds and a high negative partial charge at the Si atoms was structurally characterised and its bonding situation analysed by DFT. Crystals of the isostructural [Ge2(AlCp*)5]2+ dication were also obtained and represent the first mixed Al−Ge cluster.  相似文献   

20.
We report the synthesis and characterization of the nickelocenium cations [NiCp2]⋅+ and [NiCp2]2+ as their [F-{Al(ORF)3}2] (Cp = C5H5; RF=C(CF3)3) salts. Diamagnetic [NiCp2]2+ represents the first example for the isolation of an unsubstituted parent metallocene dication. Both salts were generated by reacting neutral NiCp2 with [NO]+[F-{Al(ORF)3}2] in 1,2,3,4-tetrafluorobenzene (4FB). The salts were characterized by single crystal X-ray diffraction (XRD), indicating shorter metal-ligand bond lengths for the higher charged salt. Powder XRD shows the salts to be phase pure, cyclic voltammetry in 4FB gave quasi reversible redox waves at −0.44 (0→1) and +1.17 V (1→2) vs Fc/Fc+. The 1H NMR of [NiCp2]2+ is a singlet at 8.6 ppm, whereas paramagnetic [NiCp2]⋅+ is significantly shifted upfield to −103.1 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号