首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfite reductase (SiR) catalyzes a six electron and six proton reduction of sulfite to sulfide. Similarly to the cytochrome P450 (cytP450) family, the active site in SiR contains a (partially reduced) heme bound axially to a cysteinate ligand—though with an extra Fe4S4 cluster. Fe(III) SO2−, Fe(III) SOH, and Fe(III) SO(H2) intermediates have been proposed for the catalytic cycle of SiR, leading to a formally Fe(V)S species—akin to the widely accepted reaction mechanism in cytP450. Here, density functional theory (DFT) data is reported for of such FeSO(H2) intermediates. The Fe(III) SO2− models display relatively high energies for homolytic bond breaking compared to their isomeric oxygen‐bound Fe(III) OS2− models, and thus offer a better alternative in terms of avoiding radical side products able to induce enzyme suicide. This could be due to the fact that the (iron‐bound) sulfur is more active from a redox standpoint compared to oxygen, thus permitting the departing oxygen to maintain a redox‐inert state. Di‐protonation of the oxygen is computed to lead to a compound I type Fe(IV)S coupled to a porphyrin radical anion—consistent with an intermediate previously observed by x‐ray crystallography.  相似文献   

2.
The Morita? Baylis? Hillman (MBH) reactions of (4S,5R,7R,8R)‐ and (4R,5R,7R,8R)‐4‐hydroxy‐7,8‐dimethoxy‐7,8‐dimethyl‐6,9‐dioxaspiro[4.5]dec‐2‐en‐1‐ones ( 2 and 3 , resp.) with aldehydes using various catalysts were studied. A combination of Bu3P/phenol in THF was found being optimum conditions giving the corresponding MBH adducts with high diastereoisomeric ratios. After separation, each stereomerically pure isomer of the MBH adducts was subjected to hydrolysis employing 1% aq. CF3COOH (TFA) in a water bath of an ultrasonic cleaner to afford the corresponding polyhydroxylated cyclopentenones in good yields.  相似文献   

3.
4.
5.
6.
7.
2‐X‐1,3,2‐diazaarsolenes and 2‐X‐1,3,2‐ stibolenes (X = Cl, Br) were prepared from appropriate α‐amino‐aldimine precursors via transamination with ClSb(NMe2)2 or via base‐induced dehydrohalogenation with EX3 (E = As, Sb). The products were further converted into 2‐iodo‐derivatives via halide exchange with Me3SiI, or into 1,3,2‐diazaarsolenium or 1,3,2‐stibolenium salts via halide abstraction using E′X3 (E′ = Al, Ga, Sb) or Me3SiOTf. All compounds synthesized were characterized by spectroscopic data and several of them by single‐crystal X‐ray diffraction studies. The results of these investigations confirmed that diazaarsolenium or stibolenium cations are stabilized by similar π‐delocalization effects as the corresponding diazaphospholenium cations. 2‐Halogeno‐1,3,2‐diazaarsolenes and 2‐halogeno‐132‐stibolenes are best addressed as molecular species whose covalent E X bonds are as in 2‐chloro‐diazaphospholenes weakened by intramolecular π(C2N2) → σ*(E X) and, in the case of the Sb‐containing heterocycles, inter‐ molecular n(X′) → σ*(E X) hyperconjugation between the σ* (E X) orbital and a lone‐pair of electrons on the halogen atom of a neighboring molecule. Correlation of structural and spectroscopic data and the evaluation of halide transfer reactions allowed to conclude that the extent of E X bond weakening in the 2‐X‐substituted heterocycles decreases and thus the Lewis acidity of the cations increases, with increasing atomic number of the pnicogen atom. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:327–338, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20098  相似文献   

8.
Using the counterpoise‐corrected potential energy surface method, the stationary structures of the π Br‐bond complexes C2H4‐nFn? BrF (n = 0–2) with all real frequencies have been obtained at MP2/aug‐cc‐pVDZ level. The order of the π Br‐bond length is 2.625 Å (C2H4? BrF) < 2.714 Å (C2H3F? BrF) < 2.751 Å (g‐C2H2F2? BrF) < 2.771 Å (trans‐C2H2F2? BrF) < 2.778 Å (cis‐C2H2F2? BrF). The interaction energies (Eint) are, respectively,‐5.9 (C2H4? BrF),‐4.4 (C2H3F? BrF),‐3.7 (g‐C2H2F2? BrF),‐3.1 (cis‐C2H2F2? BrF),‐2.8 kcal/mol (trans‐C2H2F2? BrF), at the CCSD (T)/aug‐cc‐pVDZ level, which include larger electron correlation contributions (Ecorre). The order of Ecorre is‐3.40 (C2H4? BrF),‐3.60 (C2H3F? BrF),‐3.85 (g‐C2H2F2? BrF),‐3.86 (cis‐C2H2F2? BrF),‐3.88 kcal/mol (trans‐C2H2F2? BrF). The earlier results show above that the F substituent effect elongates the π Br‐bond, reduces the Eint, and increases the Ecorre contribution of the interaction energy. Interestingly, the interaction energy of the cis‐C2H2F2? BrF structure with longer interaction distance is larger than that of the corresponding trans‐C2H2F2? BrF structure with shorter interaction distance. This reason comes from a special secondary interaction between lone pairs of Br atom with positive charge and some atoms (H, C) with positive charges of C2H2F2 in the cis‐C2H2F2? BrF structure. Comparing with corresponding C2H4‐nFn? ClF and C2H4‐nFn? HF, the C2H4‐nFn? BrF system has the larger Eint in which main contribution comes from the larger Ecorre, representing the larger dispersion interaction. The larger Ecorre contribution of the Eint of π Br‐bond can be used to understand that the π Br‐bond is shorter and stronger than corresponding π Cl‐bond. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]⋅(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi Zn Bi]4− polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi Zn Bi]4− anion and the polymeric [(ZnBi4/2)4−] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

10.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C H/P H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

11.
The formation of carbon–carbon and carbon–oxygen bonds continues to be an active and challenging field of chemical research. Nanoparticle catalysis has attracted considerable attention owing to its environmentally benign and high activity toward the reactions. Herein, we described a novel and effective nano‐Cu2O‐catalyzed one‐pot domino process for the regioselective synthesis of α‐carbonyl furans. Various electron‐deficient alkynes with 2‐yn‐1‐ols underwent this process smoothly in moderate to good yields in the presence of air at atmospheric pressure. It is especially noteworthy that a novel 2,4,5‐trisubstituted 3‐ynylfuran was formed in an extremely direct manner without tedious stepwise synthesis. Additionally, as all of the starting materials are readily available, this method may allow the synthesis of more complex α‐carbonyl furans. An experiment to elucidate the mechanism suggested that the process involved a carbene intermediate.  相似文献   

12.
A grand opening : N‐Boc‐N‐alkylsulfamides are effective substrates for the title transformation. Oxidative cyclization is highly chemoselective as well as being both stereospecific and diastereoselective. With the advent of new protocols that facilitate ring opening of the six‐membered‐ring heterocyclic products, access to differentially protected 1,3‐diamines has been made possible (see scheme).

  相似文献   


13.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

14.
Versatile ruthenium(II) complexes allow for site‐selective C H oxygenations with weakly‐coordinating aldehydes. The challenging C H functionalizations proceed with high chemoselectivity by rate‐determining C H metalation. The new method features an ample substrate scope, which sets the stage for the step‐economical preparation of various bioactive heterocycles.  相似文献   

15.
Schließen und öffnen : N‐Boc‐N‐alkylsulfamide sind geeignete Substrate für die Titelreaktion. Die oxidative Cyclisierung im ersten Schritt ist hoch chemoselektiv sowie stereospezifisch und diastereoselektiv. Mit neuen Verfahren zur Öffnung der dabei erhaltenen Sechsringheterocyclen werden unterschiedlich geschützte 1,3‐Diamine zugänglich (siehe Schema).

  相似文献   


16.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

17.
Efficient copper‐catalyzed aerobic oxidative C? H and C? C functionalization of 1‐[2‐(arylamino)aryl]ethanones leading to acridones has been developed. The procedure involves cleavage of aromatic C? H and acetyl C? C bonds with intramolecular formation of a diarylketone bond. The protocol uses inexpensive Cu(O2CCF3)2 as catalyst, pyridine as additive, and economical and environmentally friendly oxygen as the oxidant, and the corresponding acridones with various functional groups were obtained in moderate to good yields.  相似文献   

18.
19.
The decomposition of 1,1‐dimethyl‐1‐silacyclobutane (DMSCB) on a heated tungsten filament has been studied using vacuum ultraviolet laser single photon ionization time‐of‐flight mass spectrometry. It is found that the decomposition of DMSCB on the W filament to form ethene and 1,1‐dimethylsilene is a catalytic process. In addition, two other decomposition channels exist to produce methyl radicals via the Si? CH3 bond cleavage and to form propene (or cyclopropane)/dimethylsilylene. It has been demonstrated that both the formation of ethene and that of propene are stepwise processes initiated by the cleavage of a ring C? C bond and a ring Si? C bond, respectively, to form diradical intermediates, followed by the breaking of the remaining central bonds in the diradicals. The formation of ethene via an initial cleavage of a ring C? C bond is dominant over that of propene via an initial cleavage of a ring Si? C bond. When the collision‐free condition is voided, secondary reactions in the gas‐phase produce various methyl‐substituted 1,3‐disilacyclobutane molecules. The dominant of all is found to be 1,1,3,3‐tetramethyl‐1,3‐disilacyclobutane originated from the dimerization of 1,1‐dimethylsilene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号