首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new strategy for trace analysis was proposed by preparing a molecularly imprinted polymer (MIP) sensor. The template molecules of clopyralid were determined based on “gate-controlled” electrochemiluminescence (ECL) measurement. A dense polymer film was electropolymerized on an electrode surface to fabricate the MIP–ECL sensor. The process of template elution and rebinding acted as a gate to control the flux of probes, which pass through the cavities and react on the electrode surface. ECL measurement was conducted in the luminol–H2O2 system. A linear relationship between ECL intensity and clopyralid concentrations in the range of 1?×?10?9 mol/L to 8?×?10?7 mol/L exists, and the detection limit was 3.7?×?10?10 mol/L. The prepared sensor was used to detect clopyralid in vegetables. Recoveries of 97.9 % to 102.9 % were obtained. The sensor showed highly selective recognition, high sensitivity, good stability, and reproducibility for clopyralid detection.  相似文献   

2.
Glucose oxidase(GOD) was encapsulated in the Graphene/Nafion film modified glassy carbon electrode(GCE) and used as an ECL sensor for glucose. The GOD retains its bioactivity after being immobilized into the composite film. The sensor gives a linear response for glucose in the range of 2.0×10?6–1.0×10?4 mol/L with a detection limit of 1.0×10?6 mol/L. The sensor showed good stability, the RSD for continuous scanning for 5.0×10?5 mol/L glucose was 4.21 % (n=5). After being stored in 0.05 mol/L pH 7.4 PBS in 4 °C for two weeks, the modified electrode maintains 80 % of its initial activity. The glucose sensor provides new opportunity for clinical diagnosis applications.  相似文献   

3.
A novel and sensitive method for the simultaneous determination of enoxacin and ofloxacin has been established using capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection based on the ECL enhancement of tri(2,2‐bipyridyl)ruthenium(II). The conditions for sample solvent type, CE separation and ECL detection were investigated systematically. The analytes were well separated and detected within 7 min. The limits of detection (S/N = 3) of enoxacin and ofloxacin are 9.0 × 10?9 and 1.6 × 10?8 mol/L, respectively. The precisions (RSD%) of intraday and interday are less than 2.1 and 4.0%, respectively. The limits of quantitation (S/N = 10) of enoxacin and ofloxacin are 3.2 × 10?7 and 5.4 × 10?7 mol/L in human urine samples and 4.1 × 10?7 and 6.9 × 10?7 mol/L in human serum samples, respectively. The recoveries of enoxacin and ofloxacin at different concentration levels in human urine, serum and eye drop samples are between 94.0 and 106.7%. The proposed method was successfully applied to the determination of the enoxacin and ofloxacin in human urine, serum and eye drop samples and the monitoring of pharmacokinetics of ofloxacin in human body. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A highly selective molecularly imprinted polymer electrochemical sensor for In3+ detection was proposed. In3+ ion was chelated with alizarin red S to form a complex In‐ARS. The complex was used as the template molecule to prepare a molecularly imprinted polymer (MIP) based sensor. The selectivity of the sensor was improved significantly due to the three‐dimensional specific structure of the complex, and the selective complexation of ligands for metal ions. Moreover, the sensitivity of the proposed sensor was improved by recording the reductive current of ligand in complex. This technique was highly sensitive for quantitative analysis of In3+ in the concentrations ranged from 1×10?8 mol/L to 2.5×10?7 mol/L with a detection limit of 4.7×10?9 mol/L. The proposed sensor has been successfully used in detecting In3+ in real samples.  相似文献   

5.
This paper reports a surface molecular self-assembly strategy for imprinting triazophos in the electropolymerised poly(aminthiophenol) (PATP) membranes at the surface of gold nanoparticle (AuNP)/carbon nanotube (CNT) composites modified glassy (GC) electrode for electrochemiluminescent (ECL) detection of pesticide triazophos. The electrochemical and ECL behaviours of luminol at the imprinted PATP/AuNP/CNT/GC electrode were investigated before and after the rebinding of triazophos. It was also found that the ECL intensity was strikingly enhanced by the adsorbed triazophos molecules in the imprinted PATP/AuNP/CNT composite membranes, which was about 5.2-fold as compared with the blank ECL intensity. On this basis, the molecularly imprinted polymer (MIP)-ECL sensor is established for high sensitive and selective detection of triazophos residues in vegetable samples. The resulting MIP-ECL sensor shows wide linear ranges from 3.1 × 10?8 to 3.1 × 10?5 g L?1 with lower detection limit of 3.1 × 10?9 g L?1 for triazophos. Moreover, the MIP-ECL sensor has the advantages of high sensitivity, speed, specificity, stability and can become a promising technique for organophosphate pesticide detection.  相似文献   

6.
A new sensor was fabricated by MIP synthesized on the surface of magnetic nickel(II) oxide (NiO) nanoparticles which based on the oxidation current change of H2O2. Chlortoluron was selected as template which can be detected indirectly by the decrease of the H2O2 oxidation current on the NiO nanoparticle‐modified GCE caused by the blocking access after rebinding. A high sensitivity was obtained because of the high catalytic effect of NiO nanoparticles on H2O2 oxidation. Chlortoluron was determined from 1.0×10?8/L to 1.0×10?4 mol/L, with a detection limit of 2.4×10?9 mol/L. The proposed method combines the high sensitivity of the catalytic effect and the high selectivity of the MIP technique. Water samples were assayed using the MIP sensor, and recoveries of 96.9 % to 104.7 % were obtained.  相似文献   

7.
In this paper, CE coupled with electrochemiluminesence (ECL) detection using a 76‐μm Pt disk as working electrode was developed for nicotine (NIC) determination. The major metabolite of NIC is cotinine (COT), which has a similar tertiary amine structure to NIC. However, there is a carbonyl group attached in the structure of COT, which leads to the great decrease in ECL response. In order to improve the ECL response of COT, NaBH4 was used for carbonyl reduction. After reduction, NIC and COT were separated and detected by CE‐ECL. ECL response plotted with NIC concentration was linear between 5.0×10?7 and 5.0×10?5 mol/L (81–8100 μg/L), with LOD of 5.0×10?8 mol/L (8.1 μg/L). The developed CE‐ECL method was applied for NIC determination in urine and cigarette samples.  相似文献   

8.
Introduction The analysis of DNA sequence and DNA mutant detection play fundamental roles in the rapid development of molecular diagnostics and in the anticancer drug screening. Therefor many detection techniques of DNA sequence have been developed in recent years. These techniques mainly depend on the nucleic acid hybridization1 and their sensitivities are related to the specific activity of the label linked to the DNA probe. The degree of hybridization of probe to its complementary DN…  相似文献   

9.
A carbon fiber paste electrode using ionic liquid as the binder (CFILE) was fabricated. The electrochemical characteristics of the electrode was examined in ferro‐/ferricyanide solution and showed better conductivity and reversibility when compared with graphite paste‐ionic liquid electrode (GPILE) and a little better than that on the carbon nanotube paste‐ionic liquid electrode (CNTILE). Glyphosate (GLY), a pesticide, exhibited excellent catalysis to the oxidation of Ru(bpy)2+3 on CFILE and brought an obvious enhancement to the electrochemiluminescence (ECL) intensity of Ru(bpy)2+3. Based on the catalytic ability of GLY, a simple ECL method for GLY detection had been established. Under optimum conditions, the enhanced ECL intensities were found to had linearly respond to the GLY concentration between 3.0×10?7 and 3.0×10?5 mol/L, and the detection limit (S/N=3) was 2.0×10?7 mol/L. The electrode also showed excellent sensitivity in detecting GLY‐spiked soybean samples. The linear range for GLY in soybean samples was 1.0×10?6–4.0×10?5 mol/L and the detection limit was 5.0×10?7 mol/L, equal to 8.45 µg GLY in per gram of soybean. The detection limit in soybean sample was lower than the USA, EU regulation and so on. If the method is coupled with the separation technology, it can be applied to detect the GLY in the contaminated samples.  相似文献   

10.
《Electroanalysis》2005,17(11):1008-1014
Using a graphite electrode modified with vaseline and NiO, ranitidine showed a strongly ECL enhancing effect for the weak ECL signal of electrooxidation of luminol. Based on this finding, a more sensitive ECL method for ranitidine was firstly proposed. Under the optimum experimental conditions, the ranitidine hydrochloride concentration in the range of 3.0×10?8–9.0×10?6 mol/L was proportional to the enhancing ECL signal and offered a 9×10?9 mol/L detection limit for ranitidine hydrochloride. At the same time, based on the investigation on this ECL reaction mechanism, a new concept, to improve the suitable ECL reaction micro‐environment with chemically modified electrode technique for the better analytical performances of ECL analysis was also firstly proposed.  相似文献   

11.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

12.
A novel ion implantation sensor (DNA/COOH/ITO) based on DNA immobilization in COOH/ITO probe was manufactured for the first time. The surface morphologies of the electrodes were characterized by X‐ray photoelectron spectroscopy (XPS), field‐emission‐scanning electron microscopy (FSEM) and electrochemical methods. In a 0.5 mol/L PBS solution, a sensitive oxidation peak of DNA on the COOH/ITO electrode was obtained by voltammetry. The electrochemical behavior of DNA was studied. And the oxidative peak potential of DNA was +0.400 V (vs. Ag/AgCl). Its peak current was proportional to the concentration of DNA over the range of 1.0×10?8?1.0×10?6 mol/L with a detection limit of 5.0×10?9 mol/L (about 0.5 ng/mL). This sensor was applied to the direct detection of DNA samples.  相似文献   

13.
Yulong Gao  Tao Wang  Fengyu Liu 《中国化学》2016,34(12):1297-1303
The electrochemiluminescence (ECL) of the Ru(phen)32+/thymine (T) system at bare and graphene oxide (GO)‐modified glassy carbon (GC) electrodes was utilized to determine Hg2+ in tap water. The ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of thymine because of the occurrence of ECL reaction between them. Subsequently, the ECL intensity of Ru(phen)32+/T system rapidly decreased with the addition of Hg2+ because of the formation of a T‐Hg2+‐T complex. A linear response (R2=0.9914) was obtained over a Hg2+ concentration range of 1.0×10?9 mol/L to 1.0×10?5 mol/L with a detection limit of 3.4×10?10 mol/L at a bare GC electrode in 0.1 mol/L phosphate buffer (pH=8.0). The detection limit can be further reduced to 4.2×10?12 mol/L after modification of the GC electrode by GO. To verify its applicability, the proposed method was utilized to determine Hg2+ in tap water and simulated wastewater. The method exhibited good reproducibility and stability and thus reveals the possibility of developing a novel ECL detection method for Hg2+.  相似文献   

14.
A novel method for the determination of ephedra alkaloids (methylephedrine and pseudoephedrine) was developed by electrophoresis capillary (CE) separation and electrochemiluminesence detection (ECL). The use of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4) improved the detection sensitivity markedly. The conditions for CE separation, ECL detection and effect of ionic liquid were investigated in detail. The two ephedra alkaloids with very similar structures were well separated and detected under the optimum conditions. The limits of detection (signal‐to‐noise ratio = 3) in standard solution were 1.8 × 10–8 mol/L for methylephedrine (ME) and 9.2 × 10–9 mol/L for pseudoephedrine (PSE). The limits of quantitation (signal‐to‐noise ratio = 10) in human urine samples were 2.6 × 10?7 mol/L for ME and 3.6 × 10–7 mol/L for PSE. The recoveries of two alkaloids at three different concentration levels in human urine samples were between 81.7 and 105.0%. The proposed method was successfully applied to the determination of ME and PSE in human urine and the monitoring of pharmacokinetics for PSE. The proposed method has potential in therapeutic drug monitoring and clinical analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
张四纯  周国俊  鞠熀先 《中国化学》2002,20(10):1049-1054
IntroductionGallicacidexistsintheleavesandfruitsofmanytypesofplantsandiswidelyusedinmedicineforanti oxi dationandantibacterialactivity ,antiflammatoryactionandanti canceractivity .1 5Inspiteofthehealthimportanceofgallicacid ,itsmetabolismandkineticsinthehu…  相似文献   

16.
This work proposes a novel biomimetic sensor for the potentiometric transduction of rivastigmine based on molecularly imprinted polymer (MIP). Using the Taguchi method, this study analyzed the optimum conditions for preparing the MIP‐based membranes. The rank order of each controllable factor was also determined. MIP‐based membranes exhibited a Nernstian response (30.7±1.1 mV decade?1) in a concentration range from 1.0×10?5 to 1.0×10?2 mol L?1 with a LOD of 6.3×10?6 mol L?1. The sensor was successfully applied to the determination of rivastigmine concentrations in human serum, plasma, urine, rat brain and tablets.  相似文献   

17.
《Electroanalysis》2004,16(3):169-174
A fast and sensitive approach to detect reserpine in urine using micellar electrokinetic capillary chromatography with electrochemiluminescence (ECL) of Ru(bpy)32+ detection is described. Using a 25 μm i.d. capillary as separation column, the ECL detector was coupled to the capillary in the absence of an electric field decoupler. Field‐amplified injection was used to minimize the effect of ionic strength in the sample and to achieve high sensitivity. In this way, the sample was analyzed directly without any pretreatment. The method was validated for reserpine in the urine over the range of 1×10?6?1×10?4 mol/L with a correlation coefficient of 0.996. The RSD for reserpine at a level of 5 μmol/L was 4.3%. The LOD (S/N=3) was estimated to be 7.0×10?8 mol/L. The average recoveries for 10 μmol/L reserpine spiked in human urine were 94%.  相似文献   

18.
Tripropylamine (TPA) is a highly toxic and carcinogenic compound, therefore, TPA concentration in water must be monitored to protect health and the environment. In this paper, an electrochemiluminescent (ECL) sensor was fabricated by immobilising Ru(bpy)32+‐modified CuO nanoparticles (NPs) on a TiO2 nanotube array (TN) electrode. Compared to an ECL sensor fabricated by immobilising Ru(bpy)32+ on a TN only electrode, the as‐prepared sensor displays a 30 % enhanced ECL signal and a detection limit of 9.6×10?10 M at a signal‐to‐noise ratio=3 with the concentration of TPA in a range 1×10?9 to 1×10?5 M. The results from this study indicated a new approach for the enhancement of performance of ECL sensor in detecting TPA in water.  相似文献   

19.
The paper describes the first electrochemical method (differential pulse adsorptive stripping voltammetry, DPAdSV) using a screen‐printed sensor with a carbon/carbon nanofibers working electrode (SPCE/CNFs) for the direct determination of low (real) concentrations of paracetamol (PA) in environmental water samples. By applying this sensor together with DPAdSV, two linear PA concentration ranges from 2.0×10?9 to 5.0×10?8 mol L?1 (r=0.9991) and 1.0×10?7–2.0×10?6 mol L?1 ( r=0.9994) were obtained. For the accumulation time of 90 s, the limit of detection was 5.4×10?10 mol L?1. Moreover, the SPCE/CNFs sensor and the DPADSV procedure for PA determination are potentially applicable in field analysis. The process of PA adsorption at the SPCE/CNFs surface was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and theoretical studies. In the theoretical study of the interaction of CNF and PA, the first species was modelled by graphene‐like clusters containing up to 37 rings. It was found that the preferable orientation of PA is parallel to the carbon surface with the binding energy of about ?68 kJ/mol calculated by symmetry‐adapted perturbation theory (SAPT). Both the selectivity and the accuracy of the developed sensor for real sample analysis were also investigated using Polish river and sea samples.  相似文献   

20.
An electrochemical sensor for amoxicillin (AMX) detection based on reduced graphene oxide (RGO), molecular imprinted overoxidized polypyrrole (MIOPPy) modified with gold nanoparticles (AuNPs) is described in this work. The electrochemical behavior of the imprinted and non‐imprinted polymer (NIP) was carried out by cyclic voltammetry (CV) and impedance spectroscopy (IS). The structure and morphology of the prepared MIP sensor were characterized by scanning electron microscopy (SEM), UV‐Visible, Fourier transform infrared spectroscopy (FTIR) and its experimental parameters such as monomer and template concentration, pH buffer solution, incubation time of AMX and AuNPs, scan rate as well as electropolymerization scan cycles were optimized to improve the performance of the sensor. The peak current obtained at the MIP electrode was proportional to the AMX concentration in the range from 10?8 to 10?3 mol L?1 with a detection limit and sensitivity of 1.22 10?6 mol L?1 (Signal to noise ratio=3) and 2.52×10?6 μAmol?1 L, respectively. It was also found that this sensor exhibited reproducibility and excellent selectivity against molecules with similar chemical structures. Besides, the analytical application of the AMX sensor confirms the feasibility of AMX detection in milk and human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号