首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

2.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   

3.
Organometallic Compounds of the Lanthanides. 133 Synthesis and Characterization of donor-functionalised ansa -Metallocenes of Yttrium, Neodymium, Samarium, Erbium, and Lutetium The reaction of Me2SiCl2 with K[C5H4tBu], Li[C5H4SiMe3] or K[C5H3tBuMe-3] followed by treatment with K[C5H4CH2CH2NMe2] yields mixed substituted dicyclopentadienyldimethylsilanes which after double deprotonation with KH afford the dipotassium salts K2[Me2Si(C5H3tBu-3)(C5H3CH2CH2NMe2-3)] ( 1 ), K2[Me2Si · (C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)] ( 2 ), and K2[Me2Si · (C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)] ( 3 ), respectively. The reaction of 1 , 2 , or 3 with LnCl3(THF)x (Ln = Y, La, Nd, Sm, Er, Lu) leads to the complexes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 4 a ), Sm ( 4 c ), Lu ( 4 e )], [Me2Si(C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 5 a ), Sm ( 5 c ), Lu ( 5 e )], and [Me2Si(C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 6 a ), Nd ( 6 b ), Sm ( 6 c ), Er ( 6 d ), Lu ( 6 e )], respectively. Alkylation of 4 a , 4 c , 5 a , and 6 b , 6 e with LiCH3, LiCH2SiMe3, and LiCH(SiMe3)2 produces the alkylmetallocenes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnR [R = CH3, Ln = Y ( 7 a ), Sm ( 7 c ); R = CH2SiMe3, Ln = Y ( 8 a )], [Me2Si(C5H3SiMe3-3) · (C5H3CH2CH2NMe2-3)]YCH3 ( 9 a ), and [Me2Si(C5H2tBu3-Me-5)(C5H3CH2CH2NMe2-3)]LnR (R = CH3, Ln = Lu ( 10 e ); R = CH2SiMe3, Ln = Lu ( 11 e ); R = CH(SiMe3)2, Ln = Nd ( 12 b ), Lu ( 12 e )], respectively. All new compounds were characterized by elemental analyses, NMR spectroscopy and mass spectrometry. The molecular structure of 6 c and 6 e was determined by single crystal X-ray structure analysis.  相似文献   

4.
Acid‐base reaction of Sc(CH2C6H4NMe2o)3 with 1 equiv. of pyrrolyl‐substituted cyclopentadienyl ligand C4H2Me2NSiMe2C5Me4H in toluene gave the half‐sandwich scandium bis(aminobenzyl) complex (C4H2Me2NSiMe2C5Me4)Sc(CH2C6H4NMe2o)2 ( 2 ). Amine elimination between Sc[N(SiHMe2)2]3(THF) and one equivalent of C4H2Me2NSiMe2C5Me4H afforded the scandium bis(silylamide) complex (C4Me2H2NSiMe2C5Me4)Sc[(NSiHMe2)2SiMe2](THF) ( 3 ). Both scandium complexes 2 and 3 were characterized by elemental analysis, NMR spectroscopy, and single‐crystal X‐ray diffraction. 2 and 3 could serve as highly active precursors for styrene polymerization to give syndio‐tactic polystyrene (rrrrrr > 99 %).  相似文献   

5.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

6.
The synthesis of a series of ansa‐titanocene dichlorides [Cp′2TiCl2] (Cp′=bridged η5‐tetramethylcyclopentadienyl) and the corresponding titanocene bis(trimethylsilyl)acetylene complexes [Cp′2Ti(η2‐Me3SiC2SiMe3)] is described. The ethanediyl‐bridged complexes [C2H4(C5Me4)2TiCl2] ( 2 ‐Cl2) and [C2H4(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 2‐ btmsa; btmsa=η2‐Me3SiC2SiMe3) can be obtained from the hitherto unknown calcocenophane complex [C2H4(C5Me4)2Ca(THF)2] ( 1 ). Furthermore, a heterodiatomic bridging unit containing both, a dimethylsilyl and a methylene group was introduced to yield the ansa‐titanocene dichloride [Me2SiCH2(C5Me4)2TiCl2] ( 3 ‐Cl2) and the bis(trimethylsilyl)acetylene complex [Me2SiCH2(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 3 ‐btmsa). Besides, tetramethyldisilyl‐ and dimethylsilyl‐bridged metallocene complexes (structural motif 4 and 5 , respectively) were prepared. All ansa‐titanocene alkyne complexes were reacted with stoichiometric amounts of water; the hydrolysis products were isolated as model complexes for the investigation of the elemental steps of overall water splitting. Compounds 1 , 2 ‐btmsa, 2 ‐(OH)2, 3 ‐Cl2, 3 ‐btmsa, 4 ‐(OH)2, 3 ‐alkenyl and 5 ‐alkenyl were characterised by X‐ray diffraction analysis.  相似文献   

7.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

8.
The ferrocene derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArNCH)‐2‐(CH2NMe2)} ( 1 ; Ar=2,6‐iPr2C6H3)) reacts diastereoselectively with LiR by carbolithiation and subsequent hydrolysis to give (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHR)‐2‐(CH2NMe2)} ( 3 : R=tBu; 4 : R=Ph; 5 : R=Me) in high yields. For R=tBu, the organolithium derivative (η5‐Cp)Fe{η5‐C5H3‐1‐(ArLiNCHR)‐2‐(CH2NMe2)} ( 2 ) was isolated. Compound 2 reacts with GeCl2?dioxane and SnCl2 to give the metallylene amide chlorides (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} 6 (M=GeCl) and 7 (M=SnCl), respectively, which each contain three stereogenic centers. The potential of 7 as a ligand in transition‐metal chemistry is demonstrated by formation of its complex (η5‐Cp)Fe{η5‐C5H3‐1‐(ArMNCHtBu)‐2‐(CH2NMe2)} [ 9 , M= Sn(Cl)W(CO)5]. Treatment of 3 with tert‐butyllithium at room temperature causes an unprecedented carbon–carbon bond cleavage whereas under kinetic control, lithiation at the Cp‐3 position takes place, which leads to the isolation of (η5‐Cp)Fe{η5‐C5H3‐1‐(ArHNCHtBu)‐2‐(CH2NMe2)‐3‐SiMe3} ( 10 ).  相似文献   

9.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

10.
The acid–base reaction between Y(CH2SiMe3)3(thf)2 and the pyridyl‐functionalized cyclopentadienyl (Cp) ligand C5Me4H? C5H4N (1 equiv) at 0 °C afforded a mixture of two products: (η5:κ‐C5Me4? C5H4N)Y(CH2SiMe3)2(thf) ( 1 a ) and (η5:κ‐C5Me4? C5H4N)2YCH2SiMe3 ( 1 b ), in a 5:2 ratio. Addition of the same ligand (2 equiv) to Y(CH2SiMe3)3(thf)2, however, generated 1 b together with the novel complex 1 c , the first well defined yttrium mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)[C5HMe33‐CH2)‐C5H4N‐κ]Y(CH2SiMe3) containing a rare κ/η3‐allylic coordination mode in which the C? H bond activation occurs unexpectedly with the allylic methyl group rather than conventionally on Cp ring. If the central metal was changed to lutetium, the equimolar reaction between Lu(CH2SiMe3)3(thf)2 and C5Me4H? C5H4N exclusively afforded the bis(alkyl) product (η5:κ‐C5Me4? C5H4N)Lu(CH2SiMe3)2(thf) ( 2 a ). Similarly, the reaction between the ligand (2 equiv) and Lu(CH2SiMe3)3(thf)2 gave the mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)2LuCH2SiMe3 ( 2 b ), in which no ligand redistribution was observed. Strikingly, treatment of Sc(CH2SiMe3)3(thf)2 with C5Me4H? C5H4N in either 1:1 or 1:2 ratio at 0 °C generated the first cyclopentadienide‐based scandium zwitterionic “tuck‐over” complex 3 , (η5:κ‐C5Me4? C5H4N)Sc(thf)[μ‐η51:κ‐C5Me3(CH2)‐C5H4N]Sc(CH2SiMe3)3. In the zwitterion, the dianionic ligand [C5Me3(CH2)‐C5H4N]2? binds both to Sc13+ and to Sc23+, in η5 and η1/κ modes. In addition, the reaction chemistry, the molecular structures, and the mechanism are also discussed in detail.  相似文献   

11.
Four novel bridged‐amidines H2L {1,4‐R1[C(=NR2)(NHR2)]2 [R1=C6H4, R2=2,6‐iPr2C6H3 (H2L1); R1=C6H4, R2=2,6‐Me2C6H3 (H2L2); R1=C6H10, R2=2,6‐iPr2C6H3 (H2L3); R1=C6H10, R2=2,6‐Me2C6H3 (H2L4)]} were synthesized in 65%–78% isolated yields by the condensation reaction of dicarboxylic acid with four equimolar amounts of amines in the presence of PPSE at 180°C. Alkane elimination reaction of Ln(CH2SiMe3)3(THF)2 (Ln=Y, Lu) with 0.5 equiv. of amidine in THF at room temperature afforded the corresponding bimetallic rare earth alkyl complexes (THF)(Me3SiCH2)2LnL1Ln(CH2SiMe3)2(THF) [Ln=Y ( 1 ), Lu ( 2 )], (THF)(Me3SiCH2)2LnL2Ln‐ (CH2SiMe3)2(THF) [Ln=Y ( 3 ), Lu ( 4 )], (THF)(Me3SiCH2)2YL3Y(CH2SiMe3)2(THF) ( 5 ), (THF)(Me3SiCH2)2YL4‐ Y(CH2SiMe3)2(THF) ( 6 ) in 72% –80% isolated yields. These neutral complexes showed activity towards L‐lactide polymerization in toluene at 70°C to give high molecular weight (M>104) and narrow molecular weight distribution (Mw/Mn≦1.40) polymers  相似文献   

12.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

13.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

14.
When activated with fluorinated borate cocatalysts the trimetallic complexes [Cp*LnMe2]3 (Ln=Y, Lu; Cp*=C5Me5) promote efficiently the formation of high-cis polybutadiene. Respective polyisoprenes instead bear much less pronounced microstructures, but reveal crosslinked products at lower polymerization temperatures. Varying the amount of cocatalyst, the emerging active species were examined by NMR spectroscopic techniques (incl. 1H DOSY). The occurrence of donor-solvent and thermally induced degradation products of the highly reactive precatalyst [Cp*YMe2]3 and derived catalyst species was revealed by the elucidation of methylidene clusters [Cp*3Y3Me4(CH2)(thf)2] and [Cp*6Y6Me4(CH2)4], as well as [(Cp*Y)2Me2(N(Me)2(C6H4)]n[B(C6F5)4]n, implying a multimetallic active species.  相似文献   

15.
Yttrocene‐carboxylate complex [Cp*2Y(OOCArMe)] (Cp*=C5Me5, ArMe=C6H2Me3‐2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare‐earth‐metal carboxylates. Equimolar reactions with bis‐neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium‐aluminum‐hydride complex [{Cp*2Y(μ‐H)AlMe2(μ‐H)AlMe2(μ‐CH3)}2] could be isolated, which features a 12‐membered‐ring structure. The adduct complexes [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] display identical 1J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar 89Y NMR shifts of δ=?88.1 ppm (R=CH2SiMe3) and δ=?86.3 ppm (R=Me) in the 89Y DEPT45 NMR experiments.  相似文献   

16.
The syntheses of several dialkyl complexes based on rare‐earth metal were described. Three β‐diimine compounds with varying N‐aryl substituents (HL1=(2‐CH3O(C6H4))N?C(CH3)CH?C(CH3)NH(2‐CH3O(C6H4)), HL2 = (2,4,6‐(CH3)3 (C6H2))N?C(CH3)CH?C(CH3)NH(2,4,6‐(CH3)3(C6H2)), HL3 = PhN?C(CH3)CH(CH3) NHPh) were treated with Ln(CH2SiMe3)3(THF)2 to give dialkyl complexes L1Ln (CH2SiMe3)2 (Ln = Y ( 1a ), Lu ( 1b ), Sc ( 1c )), L2Ln(CH2SiMe3)2(THF) (Ln = Y ( 2a ), Lu ( 2b )), and L3Lu(CH2SiMe3)2(THF) (3). All these complexes were applied to the copolymerization of cyclohexene oxide (CHO) and carbon dioxide as single‐component catalysts. Systematic investigation revealed that the central metal with larger radii and less steric bulkiness were beneficial for the copolymerization of CHO and CO2. Thus, methoxy‐modified β‐diiminato yttrium bis(alkyl) complex 1a , L1Y(CH2SiMe3)2, was identified as the optimal catalyst, which converted CHO and CO2 to polycarbonate with a TOF of 47.4 h?1 in 1,4‐dioxane under a 15 bar of CO2 atmosphere (Tp=130 °C), representing the highest catalytic activity achieved by rare‐earth metal catalyst. The resultant copolymer contained high carbonate linkages (>99%) with molar mass up to 1.9 × 104 as well as narrow molar mass distribution (Mw/Mn = 1.7). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6810–6818, 2008  相似文献   

17.
New zincocenes [ZnCp′2] ( 2 – 5 ) with substituted cyclopentadienyl ligands C5Me4H, C5Me4tBu, C5Me4SiMe2tBu and C5Me4SiMe3, respectively, have been prepared by the reaction of ZnCl2 with the appropriate Cp′‐transfer reagent. For a comparative structural study, the known [Zn(C5H4SiMe3)2] ( 1 ), has also been investigated, along with the mixed‐ring zincocenes [Zn(C5Me5)(C5Me4SiMe3)] ( 6 ) and [Zn(C5Me5)(C5H4SiMe3)] ( 7 ), the last two obtained by conproportionation of [Zn(C5Me5)2] with 5 or 1 , as appropriate. All new compounds were characterised by NMR spectroscopy, and by X‐ray methods, with the exception of 7 , which yields a side‐product ( C ) upon attempted crystallisation. Compounds 5 and 6 were also investigated by 13C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp′ ligands, while 3 and 4 exhibit slipped‐sandwich geometries. Compounds 5 and 6 have rigid, η51(σ) structures, in which the monohapto C5Me4SiMe3 ligand is bound to zinc through the silyl‐bearing carbon atom, forming a Zn? C bond of comparable strength to the Zn? Me bond in ZnMe2. Zincocene 5 has dynamic behaviour in solution, but a rigid η51(σ) structure in the solid state, as revealed by 13C CPMAS NMR studies, whereas for 6 the different nature of the Cp′ ligands and of the ring substituents of the η1‐Cp′ group (Me and SiMe3) have permitted observation for the first time of the rigid η51 solution structure. Iminoacyl compounds of composition [Zn(η5‐C5Me4R)(η1‐C(NXyl)C5Me4R)] resulting from the reactions of some of the above zincocenes and CNXyl (Xyl=2,6‐dimethylphenylisocyanide) have also been obtained and characterised.  相似文献   

18.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

19.
The first hypercoordinate sila[1]ferrocenophanes [fcSiMe(2‐C6H4CH2NMe2)] ( 5 a ) and [fcSi(CH2Cl)(2‐C6H4CH2NMe2)] ( 5 b ) (fc=(η5‐C5H4)Fe(η5‐C5H4)) were synthesized by low‐temperature (?78 °C) reactions of Li[2‐C6H4CH2NMe2] with the appropriate chlorinated sila[1]ferrocenophanes ([fcSiMeCl] ( 1 a ) and [fcSi(CH2Cl)Cl] ( 1 d ), respectively). Single‐crystal Xray diffraction studies revealed pseudo‐trigonal bipyramidal structures for both 5 a and 5 b , with one of the shortest reported Si???N distances for an sp3‐hybridized nitrogen atom interacting with a tetraorganosilane detected for 5 a (2.776(2) Å). Elongated Si? Cipso bonds trans to the donating NMe2 arms (1.919(2) and 1.909(2) Å for 5 a and 5 b , respectively) were observed relative to both the non‐trans bonds ( 5 a : 1.891(2); 5 b : 1.879(2) Å) and the Si? Cipso bonds of the non‐hypercoordinate analogues ([fcSiMePh] ( 1 b ): 1.879(4), 1.880(4) Å; [fcSi(CH2Cl)Ph] ( 1 e ): 1.881(2), 1.884(2)). Solution‐state fluxionality of 5 a and 5 b , suggestive of reversible coordination of the NMe2 group to silicon, was demonstrated by means of variable‐temperature NMR studies. The ΔG of the fluxional processes for 5 a and 5 b in CD2Cl2 were estimated to be 35.0 and 37.6 kJ mol?1, respectively (35.8 and 38.3 kJ mol?1 in [D8]toluene). The quaternization of 5 a and 5 b by MeOTf, to give [fcSiMe(2‐C6H4CH2NMe3)][OTf] ( 7 a‐ OTf) and [fcSi(CH2Cl)(2‐C6H4CH2NMe3)][OTf] ( 7 b‐ OTf), respectively, supported the reversibility of NMe2 coordination at the silicon center as the source of fluxionality for 5 a and 5 b . Surprisingly, low room‐temperature stability was detected for 5 b due to its tendency to intramolecularly cyclize and form the spirocyclic [fcSi(cyclo‐CH2NMe2CH2C6H4)]Cl ( 9 ‐Cl). This process was observed in both solution and the solid state, and isolation and Xray characterization of 9 ‐Cl was achieved. The model compound, [Fc2Si(2‐C6H4CH2NMe2)2] ( 8 ), synthesized through reaction of [Fc2SiCl2] with two equivalents of Li[2‐C6H4CH2NMe2] at ?78 °C, showed a lack of hypercoordination in both the solid state and in solution (down to ?80 °C). This suggests that either the reduced steric hindrance around Si or the unique electronics of the strained sila[1]ferrocenophanes is necessary for hypercoordination to occur.  相似文献   

20.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号