首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present work we investigate the effect of TiCl4 treatments on the photoconversion efficiency of TiO2 arrays used in dye sensitized solar cell. The results clearly show that by an appropriate treatment the decoration of the TiO2 nanotube arrays with TiO2 nanocrystallites of a typical size of 3 nm can be achieved. These particles can be converted to mixture of anatase and rutile phase by annealing in air. This decoration of the TiO2 nanotubes leads to a significantly higher specific dye loading and, for certain annealing treatments, to a doubling of the solar cell efficiency (in our case from 1.9% to 3.8% of AM 1.5 conditions) can be achieved.  相似文献   

2.
TiO2 nanotube arrays were grown on Ti foil in mixed electrolyte by the anodizing process. TiO2 nanotube arrays were immersed in the TiCl4 solution to improve the photocurrent by enhanced charge transfer between TiO2 and dye molecules on the activity surface. Internal resistance of dye-sensitized solar cells (DSSC) was measured by impedance spectroscopy measurements. Backside illuminated DSSC with TiCl4-treated TiO2 nanotubes exhibited a conversion efficiency of 1.45% and showed improved electron transfer.  相似文献   

3.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

4.
Three‐dimensional hierarchical TiO2 nanorods (HTNs) decorated with the N719 dye and 3‐mercaptopropionic or oleic acid capped CdSe quantum dots (QDs) in photoanodes for the construction of TiO2 nanorod‐based efficient co‐sensitized solar cells are reported. These HTN co‐sensitized solar cells showed a maximum power‐conversion efficiency of 3.93 %, and a higher open‐circuit voltage and fill factor for the photoanode with 3‐mercaptopropionic acid capped CdSe QDs due to the strong electronic interactions between CdSe QDs, N719 dye and HTNs, and the superior light‐harvesting features of the HTNs. An electrochemical impedance analysis indicated that the superior charge‐collection efficiency and electron diffusion length of the CdSe QD‐coated HTNs improved the photovoltaic performance of these HTN co‐sensitized solar cells.  相似文献   

5.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

6.
Titanium dioxide (TiO2) is the most popular material for applications in solar‐energy conversion and photocatalysis, both of which rely on the creation, transport, and trapping of charges (holes and electrons). The nature and lifetime of electron traps at room temperature have so far not been elucidated. Herein, we use picosecond X‐ray absorption spectroscopy at the Ti K‐edge and the Ru L3‐edge to address this issue for photoexcited bare and N719‐dye‐sensitized anatase and amorphous TiO2 nanoparticles. Our results show that 100 ps after photoexcitation, the electrons are trapped deep in the defect‐rich surface shell in the case of anatase TiO2, whereas they are inside the bulk in the case of amorphous TiO2. In the case of dye‐sensitized anatase or amorphous TiO2, the electrons are trapped at the outer surface. Only two traps were identified in all cases, with lifetimes in the range of nanoseconds to tens of nanoseconds.  相似文献   

7.
Four para-dialkylaminophenyl (PDAAP1-PDAAP4) bearing carboxyl groups were studied for application to the dye-sensitized solar cells (DSC). It was found the short spacer CH2 between carboxyl and dialkylaminophenyl chromophore in PDAAP3 and PDAAP4 led to highly efficient monochromatic incident photon-to-current conversion efficiencies (IPCE), however the long alkyl group C4H9 attached on aniline moieties in PDAAP2 and PDAAP4 favored improvement of open-circuit photovoltage. Thus, the solar cell sensitized by PDAAP4, having both short carboxyl groups CH2COOH and long alkyl groups C4H9, exhibited the IPCE maximum of 73% at 670 nm and overall energy conversion efficiency η of 3.06%, representing the highest IPCE and η values so far in dialkylaminophenyl-based organic dye-sensitized semiconductor solar cells. Taking advantage of the highly efficient sensitizing ability of PDAAP4 in far-red region, the data of IPCE above 630 nm of the solar cells were improved greatly by cosensitization with both N3 and PDAAP4. The influences of the TiO2 film thickness and the concentration of 4-tert-butylpyridine (TBP) in electrolyte were also investigated.  相似文献   

8.
We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization. Two key factors are necessary for obtaining these morphologies. First, in order to avoid possible disruptions between the conjoint sections of the nanotube, the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage. Second, to avoid the disruption of the nanotube at the joint which results from the disparity in diameters between sections, the direct current voltage is set to be the maximum of the square wave voltage. These newly developed TiO2 nanotube arrays are expected to have potential applications in solar cells, drug release and delivery systems.  相似文献   

9.
Solar cells were fabricated using novel bubble-like CdSe nanoclusters sensitized highly ordered titanium oxide nanotube (TiO2 NT) array, prepared by anodization technique. The CdSe sensitization of TiO2 NT arrays was carried out by a chemical bath deposition method with freshly prepared sodium selenosufite, ammonium hydroxide and cadmium acetate dehydrate at different deposition times: 20, 40 and 60 min. The adsorption of CdSe nanoclusters on the upper and inner surface of the TiO2 NT arrays has been confirmed by field emission scanning electron and transmission electron microscopes. The results show the variation in cell a performance with different deposition times (20, 40, and 60 min) of CdSe on TiO2 NT arrays. The solar cell with CdSe, deposited for 60 min, shows reasonably high photovoltaic property compared to the reported results of similar studies. This solar cell shows the maximum photoelectric conversion efficiency of 1.56% (photocurrent of 7.19 mA/cm2; photovoltage of 0.438 V; and fill factor of 49.5%) and average incident photon to current efficiency of 50.2%. The photocurrent, incident photon-current efficiency and electron lifetime have been improved due to the increase of covered area and size of bubble-like CdSe nanoclusters on TiO2 NT arrays with the increase of deposition time.  相似文献   

10.
One‐dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye‐sensitized solar cells (DSSCs) due to their superior electron‐transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three‐dimensional (3D) rutile‐nanorod‐based network structure directly grown on fluorine‐doped tin oxide (FTO) substrates was developed by using a facile two‐step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head‐caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light‐harvesting efficiency was increased due to an enhanced light‐scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open‐circuit voltage decay (OCVD) analyses confirmed that the electron‐recombiantion rate was reduced on formation of the nanorod‐based 3D network for fast electron transport. As a resut, a light‐to‐electricity conversion efficiency of 6.31 % was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2.  相似文献   

11.
In recent decades, solar‐driven hydrogen production over semiconductors has attracted tremendous interest owing to the global energy and environmental crisis. Among various semiconductor materials, TiO2 exhibits outstanding photocatalytic properties and has been extensively applied in diverse photocatalytic and photoelectric systems. However, two major drawbacks limit practical applications, namely, high charge‐recombination rate and poor visible‐light utilization. In this work, heterostructured TiO2 nanotube arrays grafted with Cr‐doped SrTiO3 nanocubes were fabricated by simply controlling the kinetics of hydrothermal reactions. It was found that coupling TiO2 nanotube arrays with regular SrTiO3 nanocubes can significantly improve the charge separation. Meanwhile, doping Cr cations into SrTiO3 nanocubes proved to be an effective and feasible approach to enhance remarkably the visible‐light response, which was also confirmed by theoretical calculations. As a result, the rate of photoelectrochemical hydrogen evolution of these novel heteronanostructures is an order of magnitude larger than those of TiO2 nanotube arrays and other previously reported SrTiO3/TiO2 nanocomposites under visible‐light irradiation. Furthermore, the as‐prepared Cr‐doped SrTiO3/TiO2 heterostructures exhibit excellent durability and stability, which are favorable for practical hydrogen production and photoelectric nanodevices.  相似文献   

12.
A large clearance TiO2 nanotube arrays (LTAs) has been synthesized by a not more than 12 h anodization duration and based on this a branched TiO2 nanotube arrays (BLTs) has been achieved through TiO2 nanorods branch-like grown on the LTAs. Some key factors and probable mechanisms of the fabrication processes on two novel nanoarchitectures are discussed. Exhilaratingly, it is found that the obtained LTAs has demonstrated large pore diameter and void spaces (pore diameter ∼350 nm; void spaces ∼160 nm; and tube length ∼3.5 μm), and the synthesized hierarchical BLTs, compared with conventional TiO2 nanotube arrays, has shown a much stronger dye absorption performance and an approximately double of the solar cell efficiency (in our case from 1.62% to 3.18% under simulated AM 1.5 conditions).  相似文献   

13.
Anatase TiO2 nanorods with large specific surface areas and high crystallinity have been synthesized by surfactant‐free hydrothermal treatment of water‐soluble peroxotitanium acid (PTA). X‐ray diffraction and TEM analysis showed that all TiO2 nanorods derived from PTA in different hydrothermal processes were in the anatase phase, and high aspect ratio TiO2 nanorods with chain‐shaped structures were formed at 150 °C for 24 h by oriented growth. The nanorods were fabricated as photoanodes for high‐efficiency dye‐sensitized solar cells (DSSCs). DSSCs fabricated from the chain‐shaped TiO2 nanorods gave a highest short‐circuit current density of 14.8 mA cm?2 and a maximum energy conversion efficiency of 7.28 %, as a result of the presence of far fewer surface defects and grain boundaries than are present in commercial P25 TiO2 nanoparticles. Electrochemical impedance spectroscopy also confirmed that DSSCs based on the TiO2 nanorods have enhanced electron transport properties and a long electron lifetime.  相似文献   

14.
In dye‐sensitized solar cells (DSSCs), the charge recombination at the TiO2/dye/electrolyte interface greatly influences the photoelectron conversion efficiency. Hybrid semiconductor materials with matched band potentials are designed to reduce the charge recombination. In this study, SrTiO3/TiO2 hybridstructure was synthesized by using TiO2 nanoparticles as template in a hydrothermal, showing a negative shift in the flat band potential. The DSSC with the SrTiO3/TiO2 anode exhibits an increased photovoltage and a reduced photocurrent. The suppression of charge recombination at the TiO2/dye/electrolyte interface was observed in the electrochemical impedance spectroscopy, causing an improvement in the photovoltage. However, the SrTiO3/TiO2 system shows an obstructed electrons injection from the dye to SrTiO3/TiO2, limiting the photocurrent performance. The photoelectrochemical properties of the SrTiO3/TiO2 system are discussed in detail herein.  相似文献   

15.
The effect of the number and arrangement of TiO2‐based photoanode layers on the efficiency of dye‐sensitized solar cells (DSSCs) was investigated. Compact, mesoporous, and blocking layers of TiO2 were prepared to form monolayer, bilayer, and trilayer photoanodes. Compact and blocking TiO2 layers were prepared using dip‐coating technique, whereas the doctor‐blade method was employed to prepare TiO2 paste layers using nanoparticles prepared by the sol–gel method. The crystalline structure of photoanodes was characterized by X‐ray diffraction (XRD) measurements and their morphology and thickness were characterized by the scanning electron microscopy (SEM) technique. The photovoltaic performance of constructed DSSC devices was investigated and the optimum arrangement was identified and explained in terms of dye loading enhancement and recombination reduction at the fluorine‐doped tin oxide (FTO)/electrolyte interface.  相似文献   

16.
TiO2–SrTiO3 heterostructure nanotube arrays have been utilized as a novel oxide substrate for CdS quantum dot sensitized solar cells (QDSCs). SrTiO3 on TiO2 surface passivates surface states of TiO2 and builds cascade-structured band alignment, which significantly reduces charge recombination at electrode surface. CdS/TiO2–SrTiO3 electrode exhibits a superior photoelectrochemical performance than CdS/TiO2 electrode with ~ 70% increase in external quantum efficiency. This study suggests that the suppression of charge recombination at electrode surface is critical to efficient solar energy conversion.  相似文献   

17.
A double-sided, transparent conducting and flexible dye-sensitized solar cell (DSSC) was developed. The device comprised two metal electrodes whereby the working electrode consisted of highly ordered titania (TiO2) nanotube arrays. The maximum conversion efficiency of the DSSC was 5.1% and decreased by 6% under a 90° bending. Surface treatment of the TiO2 nanotube arrays in niobium isopropoxide solution lifted the conversion efficiency to 6.8%.  相似文献   

18.
The effects of the dye‐adsorption solvent on the performances of the dye‐sensitized solar cells (DSSCs) based on black dye have been investigated. The highest conversion efficiency (10.6 %) was obtained in the cases for which 1‐PrOH and the mixed solvent of EtOH and tBuOH (3:1 v/v) were employed as dye‐adsorption solvents. The optimized value for the dielectric constant of the dye‐adsorption solvent was found to be around 20. The DSSCs that used MeOH as a dye‐adsorption solvent showed inferior solar‐cell performance relative to the DSSCs that used EtOH, 1‐PrOH, 2‐PrOH, and 1‐BuOH. Photo‐ and electrochemical measurements of black dye both in solution and adsorbed onto the TiO2 surface revealed that black dye aggregates at the TiO2 surface during the adsorption process in the case for MeOH. Both the shorter electron lifetime in the TiO2 photoelectrode and the greater resistance in the TiO2–dye–elecrolyte interface, attributed to the dye aggregation at the TiO2 surface, cause the decrease in the solar‐cell performance of the DSSC that used MeOH as a dye adsorption solvent.  相似文献   

19.
Enhanced harvesting of visible light is vital to the development of highly efficient dye‐sensitized solar cells (DSSCs). Nanosilver‐decorated TiO2 nanofibers (Ag@TiO2 NFs) were synthesized by depositing chemically reduced Ag ions onto the surface of electrospun TiO2 nanofibers (TiO2 NFs). The prepared Ag@TiO2 NFs were coated with SiO2 (SiO2@Ag@TiO2 NFs) by using PVP as coupling agent for protecting corrosion of Ag nanoparticle by I?/${{\rm I}{{- \hfill \atop 3\hfill}}}$ solution. The fabricated SiO2@Ag@TiO2 NFs demonstrated a synergistic effect of light scattering and surface plasmons, leading to an enhanced light absorption. Moreover, an anode consisting of SiO2@Ag@TiO2 NFs incorporating TiO2 nanoparticles (NPs) increased light harvesting without substantially sacrificing dye attachment. The power conversion efficiency increased from 6.8 to 8.7 % for a thick film (10 μm), that is, 28 %. These results suggest that SiO2@Ag@TiO2 NFs are promising materials for enhanced light absorption in dye‐sensitized solar cells.  相似文献   

20.
A series of zinc–phthalocyanine sensitizers ( PcS16 – 18 ) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption‐site structures on the solar‐cell performances in zinc–phthalocyanine based dye‐sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time‐resolved fluorescence spectroscopy. The zinc–phthalocyanine sensitizer PcS18 , possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6‐diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light‐harvesting dye on a TiO2 electrode under one simulated solar condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号