首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

2.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

3.
The crystal and molecular structure of 1‐tert‐butyl 4‐ethyl (2′R,3′R,5′R,2S,3S)‐3‐bromo­methyl‐3‐hydroxy‐2‐[(2′‐hydroxy‐2′,6′,6′‐tri­methyl­bi­cyclo­[3.1.1]­hept‐3′‐yl­idene)­amino]­succinate, C21H34BrNO6, is presented. This compound is an intermediate in the new synthetic route to β‐substituted β‐hydroxy­aspartates, which are blockers of glutamate transport.  相似文献   

4.
Four novel dihydroisocoumarin (=3,4‐dihydro‐1H‐2‐benzopyran‐1‐one) glucosides were isolated from a culture broth of a strain of the fungus Cephalosporium sp. AL031. Their structures were elucidated as (2E,4E)‐5‐[(3S)‐5‐acetyl‐8‐(β‐D ‐glucopyranosyloxy)‐3,4‐dihydro‐6‐hydroxy‐1‐oxo‐1H‐2‐benzopyran‐3‐yl]penta‐2,4‐dienal ( 1 ), (2E,4E)‐5‐[(3S)‐5‐acetyl‐8‐(β‐D ‐glucopyranosyloxy)‐3,4‐dihydro‐6‐methoxy‐1‐oxo‐1H‐2‐benzopyran‐3‐yl]penta‐2,4‐dienal ( 2 ), (3S)‐8‐(β‐D ‐glucopyranosyloxy)‐3‐[(1E,3E,5E)‐hepta‐1,3,5‐trienyl]‐3,4‐dihydro‐6‐hydroxy‐5‐methyl‐1H‐2‐benzopyran‐1‐one ( 3 ), and (3S)‐8‐[(6‐O‐acetyl‐β‐D ‐glucopyranosyl)oxy]‐3‐[(1E,3E,5E)‐hepta‐1,3,5‐trienyl]‐3,4‐dihydro‐6‐methoxy‐5‐methyl‐1H‐2‐benzopyran‐1‐one ( 4 ) by spectroscopic methods, including 2D‐NMR techniques and chemical methods.  相似文献   

5.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

6.
Copper(II)–Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric CuII complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3‐{[(3‐hydroxypropyl)imino]methyl}‐4‐nitrophenol (H2L ) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single‐crystal X‐ray diffraction analysis and a photoluminescence study. The CuII atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O—H…O hydrogen bonds link the molecules to form a one‐dimensional chain structure and π–π contacts also connect the molecules to form a three‐dimensional structure. The solid‐state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.  相似文献   

7.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

8.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

9.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

10.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

11.
The synthesis of 46 derivatives of (2R,3R,4S)‐2‐(aminomethyl)pyrrolidine‐3,4‐diol is reported (Scheme 1 and Fig. 3), and their inhibitory activities toward α‐mannosidases from jack bean (B) and almonds (A) are evaluated (Table). The most‐potent inhibitors are (2R,3R,4S)‐2‐{[([1,1′‐biphenyl]‐4‐ylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 3fs ; IC50(B)=5 μM , Ki=2.5 μM ) and (2R,3R,4S)‐2‐{[(1R)‐2,3‐dihydro‐1H‐inden‐1‐ylamino]methyl}pyrrolidine‐3,4‐diol ( 3fu ; IC50(B)=17 μM , Ki=2.3 μM ). (2S,3R,4S)‐2‐(Aminomethyl)pyrrolidine‐3,4‐diol ( 6 , R?H) and the three 2‐(N‐alkylamino)methyl derivatives 6fh, 6fs , and 6f are prepared (Scheme 2) and found to inhibit also α‐mannosidases from jack bean and almonds (Table). The best inhibitor of these series is (2S,3R,4S)‐2‐{[(2‐thienylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 6o ; IC50(B)=105 μM , Ki=40 μM ). As expected (see Fig. 4), diamines 3 with the configuration of α‐D ‐mannosides are better inhibitors of α‐mannosidases than their stereoisomers 6 with the configuration of β‐D ‐mannosides. The results show that an aromatic ring (benzyl, [1,1′‐biphenyl]‐4‐yl, 2‐thienyl) is essential for good inhibitory activity. If the C‐chain that separates the aromatic system from the 2‐(aminomethyl) substituent is longer than a methano group, the inhibitory activity decreases significantly (see Fig. 7). This study shows also that α‐mannosidases from jack bean and from almonds do not recognize substrate mimics that are bulky around the O‐glycosidic bond of the corresponding α‐D ‐mannopyranosides. These observations should be very useful in the design of better α‐mannosidase inhibitors.  相似文献   

12.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

13.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

14.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

15.
The title compound, [Cu(C9H8BrClNO2)2], is a square‐planar complex. The potentially tridentate dibasic 2‐bromo‐4‐chloro‐6‐{[(2‐hydroxyethyl)imino]methyl}phenolate ligand coordinates in a trans‐bis fashion to the CuII centre via the imine N and phenolate O atoms. The CuII atom lies on the centre of inversion of the molecule. The potentially coordinating hydroxyethyl group remains protonated and uncoordinated, taking part in intermolecular hydrogen bonds with vicinal groups, leading to the formation of a two‐dimensional hydrogen‐bond network with sheets parallel to the (10) plane. Substituent effects on the crystal packing and coordination modes of the ligand are discussed.  相似文献   

16.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

17.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

18.
A simple and effective synthetic route to homo‐ and heteroleptic rare‐earth (Ln = Y, La and Nd) complexes with a tridentate Schiff base anion has been demonstrated using exchange reactions of rare‐earth chlorides with in‐situ‐generated sodium (E)‐2‐{[(2‐methoxyphenyl)imino]methyl}phenoxide in different molar ratios in absolute methanol. Five crystal structures have been determined and studied, namely tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)lanthanum, [La(C14H12NO2)3], ( 1 ), tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)neodymium tetrahydrofuran disolvate, [La(C14H12NO2)3]·2C4H8O, ( 2 )·2THF, tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐κ3O1,N,O23O1,N,O22N,O1‐yttrium, [Y(C14H12NO2)3], ( 3 ), dichlorido‐1κCl,2κCl‐μ‐methanolato‐1:2κ2O:O‐methanol‐2κO‐(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐1κ3O1,N,O2;2κ3O1,N,O2‐diyttrium–tetrahydrofuran–methanol (1/1/1), [Y2(C14H12NO2)3(CH3O)Cl2(CH4O)]·CH4O·C4H8O, ( 4 )·MeOH·THF, and bis(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐2κ3O1,N,O2)sodiumyttrium chloroform disolvate, [NaY(C14H12NO2)4]·2CHCl3, ( 5 )·2CHCl3. Structural peculiarities of homoleptic tris(iminophenoxide)s ( 1 )–( 3 ), binuclear tris(iminophenoxide) ( 4 ) and homoleptic ate tetrakis(iminophenoxide) ( 5 ) are discussed. The nonflat Schiff base ligand displays μ2‐κ3O1,N,O2O1 bridging, and κ3O1,N,O2 and κ2N,O1 terminal coordination modes, depending on steric congestion, which in turn depends on the ionic radii of the rare‐earth metals and the number of coordinated ligands. It has been demonstrated that interligand dihedral angles of the phenoxide ligand are convenient for comparing steric hindrance in complexes. ( 4 )·MeOH has a flat Y2O2 rhomboid core and exhibits both inter‐ and intramolecular MeO—H…Cl hydrogen bonding. Catalytic systems based on complexes ( 1 )–( 3 ) and ( 5 ) have demonstrated medium catalytic performance in acrylonitrile polymerization, providing polyacrylonitrile samples with narrow polydispersity.  相似文献   

19.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

20.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号