首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

2.
Novel hybrid materials containing silicate and charged oligo(p-phenylene vinylene) (OPV) amphiphiles were fabricated in one step by spin casting using evaporation-induced self assembly. The conjugated segments were substituted with trimethylammonium bromide groups at both termini, and tetraethyl orthosilicate served as the silicate precursor. X-ray diffraction scans of the hybrid films revealed Bragg diffraction peaks with d-spacings of 2.76 and 1.37 nm, indicating the presence of order in the hybrid structure. Optical properties of the hybrid films were characterized by UV-vis absorption and fluorescence spectra, and molecular orientation was characterized by IR spectroscopy. A rhodamine B derivative containing a triethoxysilane group was covalently incorporated into the silicate network of the films during the sol-gel reaction. Relative to disordered polymer films with identical organic composition, the ordered hybrid films revealed significantly enhanced emission from rhodamine B and also fluorescence quenching from OPV segments. These results indicate that the ordered and nanostructured environment leads to highly efficient energy transfer among organic components in these hybrid films.  相似文献   

3.
Host-guest materials containing strongly fluorescent donor and acceptor molecules have been prepared. Fine-tuning of the donor to acceptor distance in this material allows beautiful visible and quantitative observation of electronic excitation energy transfer phenomena. Oxonine and pyronine have been used as guest molecules and zeolite L as host. The dyes have been inserted by ion exchange. Stationary state and time-resolved experiments have been carried out with zeolite crystals of 300 and 700 nm size in the dye concentration range of 10(-4) mol/L up to 0.042 mol/L. The fluorescence decay of the donor and the pumping of the acceptor via energy transfer, which can be well observed, became faster with increasing loading. The behavior of the system follows requirements expected for F?rster energy transfer material.  相似文献   

4.
Yan B  Lu HF 《Inorganic chemistry》2008,47(13):5601-5611
A series of novel photoactive lanthanide (europium, terbium, dysprosium, samarium) hybrid materials with organic parts covalently bonded to inorganic parts via sulfide linkage have been assembled by the sol-gel process. The organic parts as molecular bridge are obtained from the functionalized thiosalicylic acids by five silane crosslinking reagents, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-(triethoxysilyl)propylisocyanate. The intramolecular energy transfer process between lanthanide ions and the molecular bridges took place within these molecular-based hybrids and especially the quantum efficiency of europium hybrids were determined, suggesting that the hybrid material systems derived from different molecular bridges present different luminescence efficiencies.  相似文献   

5.
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.  相似文献   

6.
Ambient afterglow luminescence from metal‐free organic chromophores would provide a promising alternative to the well‐explored inorganic phosphors. However, the realization of air‐stable and solution‐processable organic afterglow systems with long‐lived triplet or singlet states remains a formidable challenge. In the present study, a delayed sensitization of the singlet state of organic dyes via phosphorescence energy transfer from organic phosphors is proposed as an alternative strategy to realize “afterglow fluorescence”. This concept is demonstrated with a long‐lived phosphor as the energy donor and commercially available fluorescent dyes as the energy acceptor. Triplet‐to‐singlet Förster‐resonance energy‐transfer (TS‐FRET) between donor and acceptor chromophores, which are co‐organized in an amorphous polymer matrix, results in tuneable yellow and red afterglow from the fluorescent acceptors. Moreover, these afterglow fluorescent hybrids are highly solution‐processable and show excellent air‐stability with good quantum yields.  相似文献   

7.
Wong WW  Vak D  Singh TB  Ren S  Yan C  Jones DJ  Liaw II  Lamb RN  Holmes AB 《Organic letters》2010,12(21):5000-5003
A new class of self-assembling hexa-peri-hexbenzocoronene (HBC)-fullerene hybrid materials has been synthesized and characterized. Photoluminescence experiments indicate that energy transfer processes can be tuned in these donor-acceptor systems by varying the length and nature of the linker group. In preliminary device testing, ambipolar charge transport behavior is observed in organic field effect transistors, while single active component organic photovoltaic devices consisting of these materials achieved a maximum external quantum efficiency of 30%.  相似文献   

8.
Planarized intramolecular charge transfer(PLICT)state can facilitate the fluorescence process thanks to the relative excellent planarity.Recently,we have discovered that the excited state quinone-conformation induced planarization(ESQIP)occurring on tetraphenylpyrazine(TPP)based derivatives could furnish them with PLICT feature.Unlike to the well-known intramolecular charge transfer,strengthening the electron-donating nature on the donor(D)moiety did not impair the PLICT.The calculation results showed that planarization of the TPP based compounds scarcely accompanied with energy wastage while amount of energy was required for the torsion on geometries.In the polar solvents,the energy consumption for planarization could further decrease,but that for twisting structure would increase.To take advantage of the transformation of the frontier orbitals'distribution,the PLICT type materials would perform a potential application on organic light-emitting diodes(OLEDs).  相似文献   

9.
We used lanthanide-ion doped oxide nanoparticles, Y(0.6)Eu(0.4)VO(4), as donors in fluorescent resonance energy transfer (FRET) experiments. The choice of these nanoparticles allows us to combine the advantages of the lanthanide-ion emission, in particular the long lifetime and the large Stokes shift between absorption and emission, with the detectability of the nanoparticles at the single-particle level. Using cyanine 5 (Cy5) organic molecules as acceptors, we demonstrated FRET down to the single-nanoparticle level. We showed that, due to the long donor lifetime, unambiguous and precise FRET measurements can be performed in solution even in the presence of large free acceptor concentrations. Highly efficient energy transfer was obtained for a large number of acceptor molecules per donor nanoparticle. We determined FRET efficiencies as a function of Cy5 concentration which are in good agreement with a multiple acceptor-multiple donor calculation. On the basis of the donor emission recovery due to acceptor photobleaching, we demonstrated energy transfer from single-nanoparticle donors in fluorescence microscopy experiments.  相似文献   

10.
Light harvesting is a key step in photosynthesis but creation of synthetic light‐harvesting systems (LHSs) with high efficiencies has been challenging. When donor and acceptor dyes with aggregation‐induced emission were trapped within the interior of cross‐linked reverse vesicles, LHSs were obtained readily through spontaneous hydrophobically driven aggregation of the dyes in water. Aggregation in the confined nanospace was critical to the energy transfer and the light‐harvesting efficiency. The efficiency of the excitation energy transfer (EET) reached 95 % at a donor/acceptor ratio of 100:1 and the energy transfer was clearly visible even at a donor/acceptor ratio of 10 000:1. Multicolor emission was achieved simply by tuning the donor/acceptor feed ratio in the preparation and the quantum yield of white light emission from the system was 0.38, the highest reported for organic materials in water to date.  相似文献   

11.
Ambient afterglow luminescence from metal-free organic chromophores would provide a promising alternative to the well-explored inorganic phosphors. However, the realization of air-stable and solution-processable organic afterglow systems with long-lived triplet or singlet states remains a formidable challenge. In the present study, a delayed sensitization of the singlet state of organic dyes via phosphorescence energy transfer from organic phosphors is proposed as an alternative strategy to realize “afterglow fluorescence”. This concept is demonstrated with a long-lived phosphor as the energy donor and commercially available fluorescent dyes as the energy acceptor. Triplet-to-singlet Förster-resonance energy-transfer (TS-FRET) between donor and acceptor chromophores, which are co-organized in an amorphous polymer matrix, results in tuneable yellow and red afterglow from the fluorescent acceptors. Moreover, these afterglow fluorescent hybrids are highly solution-processable and show excellent air-stability with good quantum yields.  相似文献   

12.
Luminescent semiconductor quantum dot (QD)-based optical biosensors have the potential to overcome many of the limitations associated with using conventional organic dyes for biodetection. We have previously demonstrated a hybrid QD-protein-based fluorescence resonance energy transfer (FRET) sensor. Although the QD acted as an energy donor and a protein scaffold in the sensor, recognition and specificity were derived from the proteins. Transitioning this hybrid prototype sensor into flow cells and integrated devices will require a surface-immobilization strategy that allows the QD-based sensor to sample the environment and still maintain a distinct protein-covered QD architecture. We demonstrate a self-assembled strategy designed to accomplish this. Using glass slides coated with a monolayer of neutravidin (NA) as the template, QDs with maltose binding protein (MBP) and avidin coordinated to their surface were attached to the glass slides in discrete patterns using an intermediary bridge of biotinylated MBP or antibody linkers. Control of the surface location and concentration of the QD-protein-based structures is demonstrated. The utility of this self-assembly strategy is further demonstrated by assembling a QD-protein structure that allows the QDs to engage in FRET with a dye located on the surface-covering protein.  相似文献   

13.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

14.
《Solid State Sciences》2001,3(1-2):211-222
Luminescent hybrid materials consisting in rare-earth (Eu3+, Gd3+) organic complexes covalently attached to a silica-based network have been obtained by a sol–gel process. Four dicarboxylic acids with different aromatic subunits (dipicolinic acid, 4-phenyl-2,6-pyridinedicarboxylic acid, 4-(phenylethynyl)-2,6-pyridinedicarboxylic acid and 2,6-Bis(3-carboxy-1-pyrazolyl)pyridine) have been chosen as ligands for Ln3+ ions. They were grafted to 3-aminopropyltriethoxysilane (APTES) to give organically modified alkoxysilanes that were used as molecular precursors for the preparation of hybrid materials. Ln3+ first coordination sphere, composition of the siloxane matrix and connection between the organic and inorganic parts have been characterized by infrared spectroscopy, by 13C29Si solid-state NMR as well as by elemental analyses. UV excitation in the organic component resulted in strong emission from Eu3+ ions due to an efficient ligand-to-metal energy transfer. As compared to reference organic molecules, hybrid samples exhibited similar emission properties under UV excitation in addition to mainly unchanged excited states lifetimes. However, by direct excitation of the Eu3+-5D0 energy level, the presence of two different site distributions were evidenced in the four hybrid compounds. Emission features related to each of these site distributions and their respective attribution were investigated. Variations in the relative emission intensities were observed according to the nature of the organic chromophore. These variations were discussed in relation to the ATE (Absorption-Transfer-Emission) mechanism and to the relative energy positions of the ligand and the rare-earth ions respectively.  相似文献   

15.
Energy‐transfer cassettes consisting of naphthaleneimide‐fused metalloporphyrin acceptors (M=Zn and Pd) and BODIPY donors have been designed and synthesized. These systems have rigid pseudo‐tetrahedral structures with a donor‐acceptor separation of ca. 17.5 Å. Spectroscopic investigations, including femtosecond transient absorption measurements, showed efficient excitation energy transfer (EET) occurring according to the Förster mechanism. Strong fluorescence of the donor units and significant spectral overlap of the donor and acceptor subunits are prerequisites for the efficient EET in these systems.  相似文献   

16.
Energy transfer and electron transfer are both fundamental mechanisms enabling numerous functional materials and applications. While most materials systems employ either energy transfer or electron transfer, the combined effect of energy and electron transfer processes in a single donor/acceptor system remains largely unexplored. Herein, we demonstrated the energy transfer followed by electron transfer(ETET) process in a molecular dyad TPE-NBD. Due to energy transfer, the fluorescence of TPE-NBD was greatly enhanced in non-polar solvents. In contrast, polar solvents activated subsequent electron transfer and markedly quenched the emission of TPE-NBD. Consequently, ETET endows TPE-NBD with significant polarity sensitivities. We expect that employing ETET could generate many functional materials with unprecedented properties, i.e., for single laser powered multicolor fluorescence imaging and sensing.  相似文献   

17.
有机-无机杂化太阳电池综合了有机、无机材料的优点,成本低、理论效率高,受到人们的广泛关注.杂化太阳电池的光活性层由无机半导体和有机共轭聚合物复合而成.当光照射到活性层上时,共轭聚合物吸收光子产生激子(电子-空穴对);激子迁移到有机给体-无机受体的异质结界面处发生解离而产生自由电子和空穴;自由电子和空穴分别向无机半导体和有机聚合物传输,从而实现电荷的分离和传导.激子在有机-无机异质结界面处的分离效率是影响电池性能的一个重要因素.有机、无机两相材料往往因为接触面积小以及相容性差使此两相材料接触不佳,激子迁移到此界面不能有效分离,从而严重影响了杂化太阳电池的效率.这个问题可以通过此界面的修饰加以改善.本文即综述了有机-无机异质结界面修饰的方法、作用和意义,并展望了杂化太阳电池未来的发展趋势和应用前景.  相似文献   

18.
The study of fluorescence energy transfer from the phenyl groups of the micellar triton X-100 (TX-100) to solubilised 1-pyrene butyric acid (PBA) has been carried out. Through the analysis of the donor fluorescence quenching energy transfer efficiency has been determined. The observed donor-acceptor separation suggests that pyrene molecules are distributed uniformly in the micellar core.  相似文献   

19.
Fluorescence energy transfer, the transfer of energy from a donor to an acceptor via a dipole/induced dipole mechanism, has long been used to measure distances between donors and acceptors in proteins and other macromolecules. Because the transfer can occur over time scales larger than protein bending and breathing modes, multiple conformational states can be sampled. The analysis of these states is weighted by the donor-acceptor distance; shorter distances carry more weight, because the energy transfer depends on the inverse sixth power of the distance. The usefulness of fluorecence energy transfer in probing these large amplitude protein motions is studied here. The method involves measuring the nergy transfer efficiency while perturbing the protein conformation with heat. As the temperature increases, the amplitudes of vibrations increase, and fluorescence energy transfer should also increase if the donor and acceptor are in flexible region of the protein. This hypothesis was tested in two different protein systems; calmodulin, a calcium- activated regulatory protein, and transferrin, a blood serum iron shuttle. The preliminary studies show a differential sensitivity of the transfer efficiency to heat for the systems. Normalized energy transfer over 10 Å in calmodiulin from a tyrosine donor to a Tb(III) acceptor increases 40% from 297 to 322 K. Normalized energy transfer over 42 Å in transferrin from a Tb(III) donor to an Fe(III) acceptor increase 35% over the same temperature range. In marked contrast to these systems, energy transfer from tyrosine to a chelated Tb(III) shows anomalously high temperature- dependence.  相似文献   

20.
A series of novel photoactive hybrid materials with organic parts covalently linked to inorganic parts via the acylamino group have been assembled by sol–gel process. The organic parts as molecular bridge derive from α-hydroxypyridine (HP) functionalized by 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Finally homogeneous, molecular-based hybrid materials with different microstructure (uniform spherical or clubbed) are obtained, in which no phase separation is observed. This may be ascribed as the different coordination behavior of metal ions (Eu3+ (Tb3+) or Zn2+). Red emission of Eu–HP–Si, green emission of Tb–HP–Si and violet-blue luminescence of Zn–HP–Si hybrids can be achieved within these molecular-based hybrid materials. Besides, both Eu(Tb) and Zn are introduced into the same hybrid systems (Eu(Zn)–HP–Si or Tb(Zn)–HP–Si) through the covalent Si–O bond, whose sphere particle size can be modified. Especially the photoluminescence behavior can be enhanced, suggesting that intramolecular energy transfer takes place between inert Zn2+ and Eu3+ (Tb3+) in the covalently bonded hybrid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号