首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

2.
Abstract— The phosphorescence of alcohol dehydrogenase from horse liver (LADH) can be observed at room temperature. The quenching of this long-lived light emission, which comes from a tryptophan residue well buried within the interior of the enzyme structure, was measured. The rate constants for the quenching by the small oxygen molecule and by the I -1ion were found to be 1.4 → 108 M -1 s-1 and 108 M -1 s-1, respectively, at room temperature. The temperature dependence of the quenching yields an activation energy of about 14 kcal/mol. This activation energy and the meaning of the accompanying large pre-exponential factor in the Arrhenius equation, A = 1018 M -l s-1, are discussed in terms of a model in which the quencher threads its way through the protein network.  相似文献   

3.
CROCETIN, A WATER SOLUBLE CAROTENOID MONITOR FOR SINGLET MOLECULAR OXYGEN   总被引:1,自引:0,他引:1  
Abstract The water soluble carotenoid crocetin has been studied as a singlet molecular oxygen monitor in D2O solution, pD 8.4. Crocetin reacts chemically with singlet molecular oxygen with a rate constant of 4 x 108 M -1 s-1. The rate constant for total quenching, chemical and physical, is 2.5 x 109 M -1 s-1. Crocetin shows evidence for a reversible reaction with singlet molecular oxygen, as demonstrated by a fairly rapid absorption recovery after bleaching.  相似文献   

4.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

5.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

6.
Abstract— The rate constant for total quenching of singlet oxygen by ascorbic acid has been determined using the inhibition of the bleaching of 9, 10-dimethylanthracene by AA in pyridine. The rate constant was 8.4 × 10-6 M -1 s-1, as determined photochemically, and 1.06 10-7 M -1 s-1 as determined in a dark reaction.  相似文献   

7.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

8.
Abstract— The mechanism for photodegradation of the ultraviolet photostabilizer 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (TIN P) upon direct and dye-sensitized (singlet molecular oxygen [O2(1Δg)]-mediated) irradiation was studied. From the experimental TIN P photodegradation rate data, and low temperature (77 K) fluorescence and phosphorescence quantum yields, one can conclude that the photodegradative process involves phosphorescent states of TIN P. The open conformer of TIN P quenches O2(1Δg) by physical scavenging with a rate constant (kq) in dimethylsulfoxide of 2.8 times 106 M -1 s-1. The intramolecular hydrogen-bonded conformer does not appreciably interact with O2(1Δg). In the presence of a relatively high concentration of OH- (either 5 times 10-2 M KOH in ethanol or water at pH 13), the ionic form of TIN P (with an ionized phenol group) physically and chemically quenches O2(1Δg). The reaction rate constant ( k r) is 1 times 10 8 M -1 s-1, and the ratio k q/ k r is approximately three in alkaline aqueous media.  相似文献   

9.
Abstract— The self-sensitized photooxidation of mesodiphenylhelianthrene in various solvents has been investigated. The involvement of 1O2 as the reactive intermediate in the formation of the endoperoxide has been demonstrated by the quenching of the photooxidation by the efficient 1O2-quencher β-carotene. The rate constant for the addition of 1O2 to mesodiphenylhelianthrene has been determined to be k R≅ 1010 M -1 s-1, which is the highest value hitherto known in the literature. The probability factor p , which describes the concentration independent part of the overall quantum yield, has been measured to be p =0.17.  相似文献   

10.
Abstract— The triplet state characteristics (spectrum, lifetime and quantum yield) for four dye sensi tisers [methylene blue (MB), erythrosin (ER), haematoporphyrin (HP) and riboflavin (RF)] were determined in methanol by laser flash photolysis and singlet oxygen yields (0.60 to 0.48) from time-resolved measurements of the 1270 nm near infrared emission. The reaction of singlet oxygen with four long chain unsaturated phenyl esters [oleate (18: 1), linoleate (18: 2), linolenate (18: 3) and arachidonate (20: 4)] was followed quantitatively using the singlet oxygen luminescence technique and also, after continuous420–700 nm irradiation, by HPLC and other analysis of the isomeric product monohydroperoxides. The overall quantum yield of photooxidation (∼10-2) was shown to be consistent with the observed singlet oxygen quenching constants(2–12 times 104 dm3 mol-1 s-1) for the four esters studied and the singlet oxygen lifetime in methanol (τ∼ 9 μs). The isomer product distribution was interpreted in terms of a dual singlet oxygen and radical mechanism, the radical contribution increasing with sensitiser in the order ER = MB < HP ≪ RF, but also showing some dependence on substrate unsaturation. Evidence is presented for singlet oxygen quenching by MB and RF ( kO = 1.6 and 6.0 times 107 dm3 mol-1 s-1) and for the accelerated photobleaching of the dye sensitisers in the presence of the unsaturated esters.  相似文献   

11.
Abstract— The rate constant k5/ > for physical quenching of singlet oxygen O21;) by the sensitizer in dye-sensitized photooxygenations is determined in the case of chlorophylls a and b (7.3 times 108, 4.2 times 108 M-1 s-1 respectively), pheophytins a and b (7.4 times 107, 3.0 times 107 M-1 s_1 respectively), tetraphenylporphyrin (4.4 times 107 M-1 s_1), magnesium tetraphenylporphyrin (5.0 times 108 M-1 s_1), zinc tetraphenylporphyrin (1.5 times 108 M-1 s_l) and protoporphyrin IX-dimethylester (9.1 times 107 M -1 s_1) in benzene. These sensitizers show a linear correlation between log ksO , and their half-wave oxidation potentials and the value of the slope is similar to that observed for various compounds such as phenols. It is concluded that (i) the interaction between chlorophylls and related compounds with singlet oxygen may involve an exciplex as for phenols, and (ii) physical quenching may be envisaged as a spin-orbit-induced intersystem crossing within the exciplex.  相似文献   

12.
Abstract— Radiolytic formation and peroxidation of fatty acid radicals have been investigated by pulse radiolysis techniques in oleate, linoleate, linolenate and arachidonate systems. A strong absorption band at 280 nm associated with conjugated radicals, Rconj, formed in polyunsaturated fatty acid moieties has been used as a probe for kinetic processes occurring at doubly allylic sites in the hydrocarbon chain. Formation of Rconj by O- has been found to be more efficient than the less selective OH radical. Peroxidation of Rconj is shown to be somewhat slower, ( k R+ O2˜ 3 × 108 M -1 s-1), than O2 reactions with radicals in oleate ( k R+ O2= 1 × 109 M -1 s-1). Peroxy radicals generated in these reactions disappear slowly by essentially second order processes (2 k RO1˜ 107 M -1 s-1). The superoxide radical, O-2, shows little if any reactivity towards 0.01 M linolenate or arachidonate over periods of 20 s.  相似文献   

13.
Abstract—Reaction rate constants for the reaction of singlet oxygen with a series of 24 sulfides in chloroform have been measured by inhibition of the self-sensitized photooxidation of rubrene. The reaction rate constant is sensitive to steric effects, decreasing as the carbons α- to sulfur become more highly substituted. Addition of a methyl group to each of the carbons α- to sulfur decreases the rate constant by about a factor of 10. From a series of p - and m -substituted thioanisoles, a ρ of -1.67 ± 0.09 was found. A much better correlation was found with σ than with σ+ indicating there is no resonance interaction with the reaction center. Typical rate constants are: di- n -butyl sulfide, 2.3 × 107 M -1 s-1; CBZ-L-methionine methyl ester, 1.4 × 107; di-s-butyl sulfide, 1.8 × 106; di- t -butyl sulfide, 1.3 × 105; and thioanisole, 2.3 × 106.  相似文献   

14.
Abstract— Experiments on the photooxidation of N -allylthiourea, thiourea, and N-allylurea sensitized by the dye phenosafranine show that in N -allylthiourea the thiourea group is the site of singlet oxygen attack, while the allyl moiety neither reacts with nor quenches this metastable form of O2 (in neutral aqueous solutions). Low concentrations of N-3 (a known quencher of singlet oxygen) strongly reduce the photooxidation of allylthiourea by a mechanism which apparently obeys simple competition kinetics. From these results the rate constant of the reaction between allylthiourea and singlet oxygen is obtained ( k = 4 × 106 M -1 s-1; pH = 7.1).  相似文献   

15.
Abstract— The kinetics of the triplet-triplet energy transfer of chlorophyll α (Cha) to β carotene (Car) has been investigated in Triton X100 micelles by 353 nm laser flash photolysis. This transfer consists of an intramicellar process involving pigment species located in the same micelle. A kinetic model using a bimolecular treatment leads to a rate constant of the energy transfer in the micellar phase ( k tm≅ 6 × 108 M -1 s-1) lower than the previously determined values in homogeneous solvents ( k t≅ 4.6 ≅ 109 M -ls-l); this result shows the high microviscosity of the micellar core. In addition, the apparent bimolecular rate constant ( k t≅ 5.0 ≅ 1010 M -l s-1) appears to be an order of magnitude higher than in homogeneous solvents. The lifetime of the carotene triplet state is the same in the hydrophobic core of Triton X100 micelles (τ a = 7.7 μs) as in organic solvents (hexane or carbon disulfide). The transfer yield is controlled by the distribution of chlorophyll and carotene molecules in the micelles.  相似文献   

16.
Abstract—
The reactions of the excited states of safranine T with aliphatic amines have been studied in methanol and acetonitrile. Quenching of the singlet and triplet states occurs by different mechanisms. Whereas the former excited state is quenched by a charge-transfer mechanism, the triplet state is quenched through proton transfer from the excited dye to the amine. This process leads to the unprotonated form of the dye in the triplet state, which is later quenched by amines to form the corresponding semireduced species. The monoprotonated triplet also undergoes self-quenching in both solvents (k = 1.2 × 108 M -1 s-1).  相似文献   

17.
Abstract— The dynamics of the flavin bound to the flavocytochrome b2 from Hansenula anomala were studied by fluorescence intensity quenching and quenching emission anisotropy with iodide. The fluorescence intensity of bound flavin is decreased 13-fold as compared to the free molecule. The remaining fluorescence decays with two lifetimes equal to 0.963 ± 0.040 and 4.635 ± 0.008 ns and fractional intensities of 0.036 ± 0.002 and 0.964 ± 0.002, respectively. The bimolecular diffusion constant was found to be 3.33 × 109 M -1 s-1 when the flavin is bound to the enzyme and 8.3 × 109 Mv s-1 when the flavin is free in solution. Thus, the flavin in flavocytochrome b2 is accessible to the solvent, but the amino acid residues of the binding site inhibit the diffusion of iodide. The rotational correlation time of bound flavin was found to be 2.015 ± 0.365 ns, a value higher than that (155 ps) of free flavin in solution. Our results are discussed on the basis of local dynamics of the flavin.  相似文献   

18.
Abstract— The order of inhibition of the photooxidation of chlorophyll a in ethanol and ethanol-benzene is as follows: β-carotene, α-tocopherol, benzoquinone, DABCO, menadione, cholesterol and KI. The quenching of singlet oxygen by β-carotene occurs by a collisional quenching mechanism with a diffusion-controlled rate of 1.7 × 1010 M -1 s-1. Photodecomposition of Chi a is faster in ethanol-D2O than in ethanol-H2O. Photoirradiation (660 nm) of the peridinin-Chl a -protein complex, a photosynthetic light-harvesting pigment isolated from marine dinoflagellates, did not show any photo-decomposition of its Chi a in H2O or D2O, even after an extended period (12 h) of irradiation. However, the carotenoid, peridinin, in the photosynthetic antenna pigment was photobleached (ca. 10%) during the irradiation. We conclude that the singlet oxygen formed as a result of the Chi photosensitization is immediately quenched by the low-lying triplet state of four peridinin molecules (per Chl a ) bound within the same protein crevice. The carotenoid thus effectively protects Chl a from photodynamic damage, providing a direct proof for the protective role of carotenoids in the photosynthetic pigment complex.  相似文献   

19.
The photooxidation of N,N -diethylhydroxylamine (DEHA) by Rose Bengal (RB) has been investigated in micellar and nonmicellar aqueous solutions. We measured the quantum yield of oxygen consumption forming H2O2 and monitored two intermediates, the superoxide and diethylnitroxide radicals. When the pH was vaned, the quantum yield of oxidation remained constant for 6 < pH < 10.5, decreased in acidic pH, and increased considerably in NaOH solution; these changes could be attributed to the protonation and dissociation processes of the >N-OH moiety of DEHA. The formation of diethylnitroxide radical was enhanced by superoxide dismutase or strong alkaline solution. Around neutral pH, the oxidation proceeded mainly via electron transfer from DEHA to the RB triplet ( k q = 107 M -1 s-1) with little 1O2 participation ( kq < 105 M -1 s-1). However, when RB was incorporated into micelles in alkaline solution, the contribution of the singlet oxygen pathway increased at the expense of electron transfer, which was inhibited by the less polar micellar environment. Dark autoxidation of DEHA was accelerated by heavy metal impurities and increased very strongly in NaOH solution.  相似文献   

20.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号