首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The (2-methoxyphenyl)piperazine pharmacophore, a part of the WAY 100635 structure, has been functionalized with phosphinoarylbenzylamide or phosphinoarylbenzylamine chelator groups using propylene or hexylene alkyl chains as linkers (L2-L4). These heterofunctionalized phosphines bearing an arylpiperazine moiety have been used to stabilize rhenium tricarbonyl complexes of the type [Re(CO)3Br(κ2-L)] (4, L = L2; 5, L = L3; 6, L = L4), which have been fully characterized, including by X-ray crystallographic analysis in the case of compounds 4 and 5. These monomeric complexes are six-coordinate, displaying a distorted octahedral coordination geometry with a facial arrangement of the carbonyl groups. The other three remaining positions are occupied by a bromide and by the bidentate heterofunctionalized phosphine, which coordinates through the phosphorus and the oxygen atom or through the phosphorus and the nitrogen atom in 4 and 5, respectively. The 99mTc complexes (3a-6a) were also prepared and their characterization established by comparative HPLC, using the Re complexes as surrogates. The in vitro binding affinity for the 5HT1A receptor subtype and the selectivity against the 5HT2A receptors for the rhenium complexes were determined. Compound 3 is the only one which presents a reasonable affinity and selectively towards 5HT1A (IC50 = 20 nM) and 5HT2A (IC50 = 4680 nM) receptors, respectively. When the spacer length between the chelate unit and receptor binding domain increased and/or the amide group in the chelator was replaced by a secondary amine unacceptable affinity values for 5HT1A receptors (IC50 = 200-1100 nM) and lost of selectivity were observed.  相似文献   

2.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

3.
Two proline derivatives, (S)-2-aminomethylpyrrolidine and (R)-2-aminomethylpyrrolidine modified β-CD (CD-1, CD-2) were synthesized in the yields of 31% and 14%. Their self-inclusion conformations were characterized by 1H ROESY NMR studies and quantum calculation. When CD-1 was applied to asymmetric aldol reactions, up to 94% ee was obtained. Substrate selectivity was also observed in these asymmetric aldol reactions.  相似文献   

4.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

5.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

6.
The tetradentate [OSSO]-type bis(phenol) ligands, [{2,2′-(HOC6H2-4,6-R2)2CH2SCH2CH2SCH2}] (R = tBu, 2; Br, 3) react with MBz4 (M = Zr, Hf) to yield the corresponding dibenzyl complexes, [M{2,2′-(OC6H2-4,6-R2)2CH2SCH2CH2SCH2}Bz2] (R = Br, M = Zr, 4Br; Hf, 5Br; R = tBu, M = Hf, 5) in a good to very good yield. Zirconium diamido complexes, [Zr{2,2′-(OC6H2-4,6-R2)2CH2SCH2CH2SCH2}(NMe2)2] (R = tBu, 6; Br, 6Br) were prepared in a reaction of the corresponding disodium salt of 2 or 3 generated in situ with ZrCl2(NMe2)2(THF)2. Heating of 6 with TMSCl at 35 °C afforded zirconium dichloro complex, [Zr{2,2′-(OC6H2-4,6-tBu2)2CH2SCH2CH2SCH2}Cl2] (7), whereas the titanium analog 8 was prepared in a direct reaction with TiCl4. While for complexes 4Br, 5, 5Br, 6, 6Br and 7 single C2-symmetric isomers were observed in solution at room temperature, as revealed by the NMR spectroscopic data, titanium complex 8 formed as a mixture of cis-α (8a) and cis-β (8b) isomers in a ratio of approx. 20:80% (measured in CD2Cl2). The VT NMR studies revealed a reversible conversion of 8a into 8b above 60 °C. The X-ray crystal structure determination of complexes 4Br, 5Br and 7 confirmed their C2-symmetrical configuration in the solid state with cis-arranged benzyl/chloro groups and the trans-coordination of two bulky phenolato moieties. The zirconium dibenzyl complexes exhibit good catalytic activities in homopolymerization of 1-hexene (atactic poly(1-hexene), PDI = 1.5-1.7) and vinylcyclohexane (isotactic poly(vinylcyclohexane), PDI = 1.2-1.8) upon activation with a co-catalyst. In both polymerizations no increase of activity was observed for the complex 4Br with electron-withdrawing substituents on phenolate rings. Moreover, polymerization of liquid propylene catalyzed by the titanium dichloro isomeric mixture 8 afforded at 5 °C ultrahigh molecular weight atactic/isotactic polypropylene mixtures.  相似文献   

7.
Evolution of a convergent synthetic strategy to access (+)-spongistatin 2 (2), a potent cytotoxic marine macrolide, is described. Highlights of the synthesis include: development of a multicomponent dithiane-mediated linchpin union tactic, devised and implemented specifically for construction of the spongistatin AB and CD spiro ring systems; application of a CaII ion controlled acid promoted equilibration to set the thermodynamically less stable axial-equatorial stereogenicity in the CD spiroketal; use of sulfone addition/Julia methylenation sequences to unite the AB and CD fragments and introduce the C(44)-C(51) side chain; and fragment union and final elaboration to (+)-spongistatin 2 (2) exploiting Wittig olefination to unite the advanced ABCD and EF fragments, followed by regioselective Yamaguchi macrolactonization and global deprotection. Correction of the CD spiro ring stereogenicity was subsequently achieved via acid equilibration in the presence of CaII ion to furnish (+)-spongistatin 2 (2). The synthesis proceeded with a longest linear sequence of 41 steps.  相似文献   

8.
Three ligands with flexible bis-terdentate coordination sites, di(2-pyridylcarbaldehyde)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L1), di(2-acetylpyridyl)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L2) and di(2-pyridylketone)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L3) have been easily prepared. Dinuclear double-stranded helicates Co2(L1)2(ClO4)2(C2H5OH)2(H2O)2 (1), Co2(HL2)(L2)(ClO4)3(C2H5OH)2(H2O)2 (2) and Co2(HL3)(L3)(ClO4)3(H2O)4 (3) based on the ligands, H2L13, respectively, have been obtained via self-assembly, their structures were determined by FT-IR, Elemental Analysis, ESI-MS and X-ray diffraction method.  相似文献   

9.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

10.
An easy and inexpensive three-step synthesis of new 2,3-dimethyl-1,4-diphenylcyclopentadiene (3) ligand and the titanium and zirconium homometallocene dichlorides [TiCl25-C5H-2,3-Me2-1,4-Ph2)2] (4), [ZrCl25-C5H-2,3-Me2-1,4-Ph2)2] (5), and the mixed ligand zirconium complex [ZrCl25-C5H-2,3-Me2-1,4-Ph2)(η5-C5H5)] (6) prepared thereof are described. The polymerization of ethene using 4-6/MAO catalysts revealed that zirconocene complexes 5 and 6 displayed moderate and high activity, respectively, whereas the titanium catalyst 4/MAO was inactive. The crystal structures of 4 and 5 were determined by X-ray crystallography.  相似文献   

11.
[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2(μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf)(CH3CN)]BPh4 (6) and [(HMB)Ru(dppf)(CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9)), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)}2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf)(S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)](BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl]PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized.  相似文献   

12.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

13.
Rate constants, kA,R, for the rearrangement of the (Z)-phenylhydrazones (1a-e) of a series of 5-alkyl-3-benzoyl-1,2,4-oxadiazoles substituted at C(5) with linear alkyl chains of different length (from C4 up to C12) into the relevant 4-acylamino-2,5-diphenyl-1,2,3-triazoles (2a-e) have been measured in dioxan/water in the base-catalyzed region (pS+ 10.5-12.6). For each substrate log kA,R are linearly related to pS+. The significant decrease of the slopes of these straight lines (from 0.96 down to 0.78) upon increasing the length of the linear alkyl chain at C(5) and that of the reactivity (down to 14-26%) upon increasing the substrate concentration suggest a decrease of the polarity of the ‘actual’ reaction medium and provide indirect evidence of the tendency of the substrates (Z)-1a-e to self-assemble. To confirm the above outcome direct evidence of the formation of self-assemblies in solution were obtained from 1H NMR and spectrofluorimetry measurements while ESI-MS experiments point out the presence of aggregated substrates also in the gas phase.  相似文献   

14.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   

15.
A novel half-sandwich Zr(IV) complex [η51-N-C5(CH3)4CH2CH2N(CH3)2]ZrCl3 (6) together with zirconocene dichlorides [η5-C5(CH3)4CH2CH2N(CH3)2][η5-C5(CH3)5]ZrCl2 (4) and [η5-C5(CH3)4CH2CH2N(CH3)2]2ZrCl2 (5) have been prepared. Complex 6 has been isolated and characterized in three different forms, namely, as an adduct with THF 6a, an adduct with tetrahydrothiophene 6b, and a solvent-free form 6c. Molecular structures of complexes 4, 6b, and 6c have been established by X-ray diffraction analysis. Complex 6c has been shown to be a monomeric solvent-free half sandwich Zr(IV) complex. The dynamic behavior of complex 6a in a non-solvating medium (an equilibrium between 6a and 6c along with a degenerate interconversion of the Zr-Ccp-CH2-CH2-N(CH3)2-(Zr) pseudo-five-member metallacycle) have been studied by the variable-temperature 1H and 13C{1H} NMR spectroscopy. The activation parameters for the degenerate five-member cycle interconversion have been elucidated.  相似文献   

16.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

17.
The cationic manganese tricarbonyl complexes containing η6-2-methylhydroquinone (2a), η6-2,3-dimethylhydroquinone (3a), η6-2-t-butylhydroquinone (4a), η6-tetramethylhydroquinone (5a) and η6-4,4′-biphenol (6a) are readily deprotonated to the corresponding neutral (η5-semiquinone)Mn(CO)3 (2b-6b) and anionic (η4-quinone)Mn(CO)3 (2c-5c) complexes. The X-ray structures of 2b-6b feature strong intermolecular hydrogen bonding interactions that result in the formation of supramolecular organometallic networks. Significantly, the substitution pattern at the semiquinone ring affects the stereochemistry of the hydrogen bonding interactions. NMR spectra of 2b, 3b and 5b reveal dynamic hydrogen bonding in solution.  相似文献   

18.
Using 4-ethynylphenylferrocene (1) as the building block, a new series of rigid-rod alkynylferrocenyl precursors consisting of fluoren-9-one unit, 2-bromo-7-(4-ferrocenylphenylethynyl)fluoren-9-one (2a), 2,7-bis(4-ferrocenylphenylethynyl)fluoren-9-one (2b), 2-trimethylsilylethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (3) and 2-ethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (4) have been prepared in moderate to good yields. The acetylene complex 4 is a useful precursor for the synthesis of well-defined carbon-rich ferrocenyl heterometallic complexes, trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PEt3)2Ph] (5), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PBu3)2CCRC≡CC6H45-C5H4)Fe(η5-C5H5)] (6), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCM(dppm)2Cl] (M=Ru (7), Os (8)) (R=fluoren-9-one-2,7-diyl). All new complexes have been characterized by FTIR, NMR and UV-Vis spectroscopies and fast atom bombardment mass spectrometry (FABMS). The molecular structures of 1, 2a, 4, 6 and 8 have been determined by single-crystal X-ray studies where an ironiron through-space distance of nanosized dimension (ca. 42 Å) is observed in the trimetallic molecular rod 6. The electronic absorption, luminescence and electrochemical properties of these carbon-rich molecules were investigated and the data were correlated with the theoretical results obtained by the method of density functional theory.  相似文献   

19.
Structural analysis of a previously reported half-sandwich complex having three-legged “piano-stool” geometry [(η6-C6H6)RuII(L1)Cl][PF6] (1) (L1 = 2-(pyrazol-1-ylmethyl)pyridine) is described. Treatment of 1 with (i) Ag(CF3SO3) in CH3CN and (ii) NaN3 in CH3OH, and (iii) the reaction between [(η6-C6H6)Ru(L2)Cl]-[PF6] (2) (previously reported) and NaCN in C2H5OH led to the isolation of [(η6-C6H6)Ru(L1)(CH3CN)][PF6]2 (3), [(η6-C6H6)Ru(L1)(N3)][PF6] (4), and [(η6-C6H6)Ru(L2)(CN)][PF6] (5), respectively (L2 = 2-(3,5-dimethyl-pyrazol-1-ylmethyl)pyridine). The complex [(η6-C6H6)Ru(L4)Cl][PF6] (6) with a new ligand (L4 = 2-[3-(4-fluorophenyl)pyrazol-1-ylmethyl]pyridine) has also been synthesized. The structures of 3-6 have been elucidated (1H NMR spectra; CD3CN). The molecular structures of 1, 4, and 6·C6H5CH3 have been determined. Notably, the crystal-packing in these structures is governed by C-H?X (X = Cl, N) interactions, generating helical architectures.  相似文献   

20.
Syntheses of rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{Me3SiN(CH2)3NSiMe3} (rac-3/meso-3) and rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{PhN(CH2)3NPh} (rac-4/meso-4) were achieved by metallation of K2[PhP(3-t-Bu-C5H3)2] · 1.3 THF (2) with Zr{RN(CH2)3NR}Cl2(THF)2 (where R = SiMe3 or Ph, respectively) using ethereal solvent. These isomeric pairs were characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy; rac-3 and rac-4 were also examined via single crystal X-ray crystallography. The structures of rac-3 and rac-4 are notable in the tendency of the cyclopentadienyl rings towards η3 coordination. While isolated samples of rac-3/meso-3 and rac-4/meso-4 slowly isomerize in tetrahydrofuran-d8 to equilibrium ratios, the isomerization rate for 3 is more than 15-fold greater than that for 4. In addition, equilibrium ratios are rapidly reached when isolated samples of rac-3/meso-3 and rac-4/meso-4 are exposed to tetrabutylammonium chloride in tetrahydrofuran-d8 solvent. We propose that a nucleophile (either chloride or the phosphine interannular linker) brings about dissociation of one cyclopentadienyl ring, thus promoting the rac/meso isomerization mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号