首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP–MS) has been used for the determination of thorium and light rare-earth elements (LREEs) in soil and soil water samples from a mineral deposit (Morro do Ferro, Minas Gerais, Brazil). Size-exclusion chromatography (SEC) on-line coupled to ICP–MS and UV-detection was applied to verify possible association/complexation of these elements with organic matter in soil water separated by a centrifugation technique. Concentrations of DOC in soil waters are in the range of 10 to 500 mg L–1 and correlate with the organic carbon content of the soil (r=0.950; p<0.001). Concentrations of 30 to 40 g L–1 for the LREEs (La, Ce, Nd) and up to 14 g L–1 for Th were measured in soil waters of highest DOC content. SEC chromatograms of these waters showed the association of elements with different nominal high-molecular-mass ranges, characteristic of soil humic and fulvic acids: >10,000 Da, with a retention time of about 10 min; 7000 to 8000 Da with retention times of 13 to 15 min; and 2000 to 4000 Da with retention times around 23 min. Elemental peaks associated with dissolved organic matter below 1000 Da were not observed, suggesting that complexation with simple plant organic acids or inorganic ligands is of minor importance in the environment studied in this work.  相似文献   

2.
The concentrations of REE and other trace elements have been determined in samples of Antarctica by Instrumental Neutron Activation Analysis (INAA). The samples were collected from the West Lake area near Great Wall Station. The samples include sediment, residual plants, rock and soil taken from the bottom of the lake to 3.4 m deep. The amounts of samples were very rare. In order to get more information, reactor NAA using both short and long irradiations with K0 standardization has been adopted. Nine rare-earth elements (REE) namely La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, and Lu as well as other trace elements (As, Au, Ba, Br, Co, Cr, Hf, Sc, Se, Th, V, Zn) have been determined. The concentrations and distribution patterns of REE in the samples have been given.  相似文献   

3.
La, Ce, Nd, Sm, Eu, Tb, Yb and Lu were determined in needles of age class 5 from 6 individual Norway spruce trees and in their soils. Measurements were done by neutron activation analysis with a group separation of the REE. Concentrations in spruce needles are among the lowest values reported for plant leaves. Concentrations show small variations between the soils, but large variations between the trees. The mean ratio plant/soil is about 5·10–3 forall REE except Ce. Needles have no Eu-anomaly and a strong negative Ce-anomaly with respect to the soil. In addition to the fractionation of the individual REE between trees and the soil, there is also a considerable fractionation between the trees.  相似文献   

4.
Eight rare-earth elements (REE), namely La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu, as well as other elements (Na, K, Sc, Cr, Fe, Co, Rb, Cs, Ba, Hf, Ta, and Th), have been determined in fifteen cretaceous clay samples of continental facies by instrumental neutron activation analysis. It was found that the REE contents are variable in absolute and relative values, but the means of these values are similar to those of European, shales. Analyses have also been made of the fractions <38 m and <2 m (clay-sized). The mineral contents of the clay-sized fraction were determined semi-quantitatively by X-ray diffraction. The results suggest the preferential presence of REE, Hf, and Th in fractions 2–38 m, which can be explained by the presence of apatite, monazite, and zircon. A correlation study of chemical and mineralogical data of the clay-sized fraction showed that kaolinite is correlated with REE, specially the lighter ones; illite with K, Rb, and Cs; and smectite with Na.  相似文献   

5.
We have determined the concentrations of eight REE elements by instrumental neutron activation analysis (INAA) (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) in plant leaves of the species Solanum lycocarpum, a typical Brazilian "cerrado" plant widely distributed around the country, and in the soils in which they grow. Three different ecosystems were studied. Very similar chondrite normalized patterns were observed in the soil and in the plant, presenting an enrichment of the light REE, indicating a typical absorption of these elements by this species.  相似文献   

6.
The concentration of 8 REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in 17 species of plants and their host soil, which were collected from a rare earth ore area located in the south of China, have been determined by INAA. The chondritic normalized REE patterns for different parts of plants (e.g., leaf stem and root) and their host soils were studied. The results showed that the concentration levels of REE for most plants in the sampling area were elevated. Particularly, the leaves of the fern (Dicranopteris dichotoma) contain extremely high concentration of the total REE (675–3358 g/g) Generally, these REE distribution patterns in every part of plants were very similar and reflected the characteristics of their host soils. However, the chondritic normalized REE patterns in some plants relative to the host soil revealed obvious fractionation, such as the depletion of the heavy REE (for fernCitrus reticulata andBrassia campestris), the heavy REE enrichment (forCamellia sinensis, Camellia oleifera andZiziphus) and the Ce positive anomaly (forGardenia jasminoides).  相似文献   

7.
A method has been developed for the analysis of rare earth elements (REEs) in kimberlite samples using inductively coupled plasma mass spectrometer (ICP-MS). The samples were dissolved using sodium peroxide fusion and after appropriate dilutions the solutions were analyzed using ICP-MS. The paper presents the concentration of rare-earth elements as determined by ICP-MS in eight kimberlite samples from Central India. The method was validated using certified reference materials STSD-1 and STSD-2 from Canadian Certified Reference Material Project. The method detection limit of various REEs varies from 0.12 to 1.54?mg?kg?1. The total REE concentrations range from 418 to 726?mg?kg?1 and fall within the interval of those reported in the literature for kimberlites. Despite the marked difference in the REE contents, all the analyzed samples show similar REE patterns that resemble those for kimberlites. In order to compare ICP-MS results, the samples were analyzed using instrumental neutron activation analysis which is a reference method for determination of REEs in geological samples.  相似文献   

8.
通过酸洗脱灰及腐殖酸提取等方法对伊敏褐煤进行处理,并应用ICP-MS对处理前后的样品进行了稀土元素测定。在对脱灰前后稀土元素与灰分和C、H、O等有机组成元素的相关性以及稀土元素在腐殖酸中的赋存特征分析的基础上,认为煤中稀土元素-有机质相互作用受煤化作用过程中的脱氧、脱氢和增碳作用控制。稀土与煤中各类官能团相互作用形成四类有机态稀土元素复合物,第一类是与被烷基侧链高度取代的芳香结构单元形成的复合物;第二类是与氢化芳香结构单元形成的复合物;第三类是与低取代度的芳香结构单元形成的复合物;第四类是与含氧官能团作用形成的复合物,后两类的稳定性差。这些有机态稀土元素复合物的稳定性在总体受镧系收缩效应控制的基础上,还受稀土元素化学价态的影响;重稀土与有机质形成的有机态稀土元素复合物的稳定性大于轻稀土。轻稀土在原煤中和腐殖酸的结合不稳定,且具有与镧系收缩相反的效应;轻稀土在脱灰煤中和腐殖酸的结合,与中稀土、重稀土在原煤和脱灰煤中腐殖酸结合规律相同,都体现了良好的镧系收缩效应。  相似文献   

9.
Organic or inorganic colloids play a major role in the mobilization of trace elements in soils and waters. Environmental physicochemical parameters (pH, redox potential, temperature, pressure, ionic strength, etc.) are the controlling factors of the colloidal mobilization. This study was dedicated to follow the colloid-mediated mobilization of trace elements through time at the soil/water interface by means of an experimental approach. Soil column experiments were carried out using percolating synthetic solutions. The percolated solutions were ultrafiltrated with various decreasing cutoff thresholds to separate the different colloidal phases in which the dissolved organic carbon and trace element concentrations were measured. The major results which stem from this study are the following: (i) The data can be divided into different groups of organic compounds (microbial metabolites, fulvic acids, humic acids) with regard to their respective aromaticity and molecular weight. (ii) Three groups of elements can be distinguished based on their relationships with the colloidal phases: the first one corresponds to the so-called "truly" dissolved group (Li, B, K, Na, Rb, Si, Mg, Sr, Ca, Mn, Ba, and V). The second one can be considered as an intermediate group (Cu, Cd, Co, and Ni), while the third group gathers Al, Cr, U, Mo, Pb, Ti, Th, Fe, and rare earth elements (REE) carried by the organic colloidal pool. (iii) The data demonstrate that the fulvic acids seem to be a major organic carrier phase for trace elements such as Cu, Cd, Co, and Ni. By contrast, the trace elements belonging to the so-called colloidal pool were mostly mobilized by humic acids containing iron nanoparticles. Lead, Ti, and U were mobilized by iron nanoparticles bound to these humic acids. Thus, humic substances allowed directly or indirectly a colloidal transport of many insoluble trace elements either by binding trace elements or by stabilizing a ferric carrier phase. (iv) Finally, the results demonstrated also that REE were mostly mobilized by humic substances. The REE normalized patterns showed a middle REE downward concavity. Therefore, as previously shown elsewhere humic substances are a major control of REE speciation and REE fractionation patterns as well since the humic substance/metal ratio was the key parameter controlling the REE pattern shape.  相似文献   

10.
Abstract

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was employed to determine the concentration of rare earth elements (REEs) in plants and soils. Sample preparation and analytical conditions were investigated to set up a simple routine procedure for measuring rare earth elements. For prompt sample decomposition, a microwave digestion technique was successfully used with an acid mixture of HCl+HNO3+HF. Detection limits, reproducibility, accuracy and possible interference were also studied. ICP-MS provided extremely low detection limits for REEs (0.6–6ng/l). Precision was typically better than 6% RSD (relative standard deviation) for soil and 10% for plant. The potential of the method was evaluated by analysis of standard reference materials of soils and plants. A good agreement between the experimental results and certified values was observed. The spectroscopic interference of Ba with Eu and light REEs(LREEs, La-Eu) with heavy REEs(HREEs, Gd-Lu) were eliminated by the algebra correction.

The results suggested that REEs in soil samples existed mainly as light REEs, and the same concentration distribution patterns of Oddo-Hakins law were observed, showing negative gradient from La to Lu concentrations. The REE contents in plants were very low, less than 20μg/g and varied with plant species. Apart from rape leaf(Brassica juncea), the REE distribution patterns in other plant leaves were consistent with soils, indicating that these plants generally absorbed REEs from soil without selectivity. Rape leaf showed selective absorption for LREEs, especially for La. The REE concentration distribution in parts of hot pepper(Capsicum annuum) was characteriaed by root>leaf>stem>fruit. The REEs absorbed by hot pepper concentrated mainly in roots and leaves, very little migrated into fruit. Transfer factors(TFs) of REEs in plants were very low. Although the contents of LREEs were relatively more than those of HREEs, no distinct difference of TFs between LREEs and HREEs was observed, meaning that LREEs and HREEs have the same abilities of transportation. However, for rape leaf, the TFs of LREEs were one or two orders of magnitude higher than those of HREEs.  相似文献   

11.
Humic acids from a peat soil, an agricultural soil and a lake sediment from the Philippines were fractioned by sorption chromatography on cross-linked dextran gels (Sephadex1). The NMR spectra of these fractions have sharp, well resolved bands which can be attributed to lignin-like structures, carbohydrates and aliphatic groups. Similar bands have been observed in the NMR spectra of humic acid fractions from other environments; however, the chemical shifts of some of the lines vary from one humic acid to another. These lines appear to arise from well defined, partially decomposed plant components and probably are diagnostic of the types of plants that decomposed into these humic acids. The lines in the carbohydrate region are the best resolved and may prove to be the most useful in identifying the plant precursors of any particular humic acid fraction.  相似文献   

12.
Liquid chromatography coupled on-line to a sequential ICP/AES system is applied for the determination of 14 rare-earth elements (REEs) in samples with widely different concentrations of REEs and matrix elements. The REEs are separated on a cation-exchanger by applying an α- hydroxyisobutyric acid gradient. The determination limits were the same as those obtained by continuous nebulization of single-element standard solutions. The chromatographic separation precludes mutual spectral interferences between the REEs. The practical value of the method developed is demonstrated by the determination of REE impurities in Specpure rare-earth oxides, by its demonstrated potential to evaluate real spectral interferences, and by the analysis of geological samples (natural phosphates) with relatively low total REE contents. The detection limits of REEs in these natural phosphates ranged between 0.005 and 0.4 μg g?1.  相似文献   

13.
Samples of various types (spruce needles, blackberry leaves, soils, and soil extracts) have each been taken at 6 places from the same site. In addition, 4 whirls each from 2 spruce trees were sampled. Rare earth elements (REEs) were determined in these samples by neutron activation analysis with a chemical group separation. Variations between places were found to be small with soils and soil extracts, but large with plants. Variations between whirls were small. Plants neither reflected the soil nor the soil extract. Both plant species were dissimilar, but the logarithm of their ratio was a linear function of the atomic number of the REE. A negative Ce anomaly (with respect to soil) was found in both plant species.  相似文献   

14.
The present paper describes the inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1). In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87Sr/86Sr ratio, was in the top layer soil sample relatively higher than in the lower layers.  相似文献   

15.
Inductively coupled plasma mass spectrometry (ICP–MS) and isotope-ratio mass spectrometry (IR-MS) have been used to examine the multi-elemental composition and 15N/14N and 13C/12C isotope ratios of three spring barley (Hordeum vulgare) genotypes (Orthega, Barke, and Bartok) grown in three typical Danish agricultural soils (North Jutland, West Jutland, and East Zealand) differing in soil fertility. The aim of the study was to examine whether it was possible to generate a unique elemental fingerprint of individual barley genotypes irrespective of the elemental imprint plants had received from soils differing in fertility and agricultural practice. Multivariate statistics were used to analyze the elemental fingerprints of the barley genotypes at different times during a full growing season from early tillering to full maturity of the barley grains. Initially, 36 elements were analyzed in the plant samples but this number was subsequently reduced to 15 elements: B, Ba, C, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S, Sr, and Zn. These elements exceeded the limit of detection (LOD) for all genotypes, soil types, and plant growth stages and for these elements the accuracy was better than 90% compared with apple leaf certified reference material (CRM). Principal component analysis (PCA) separated multi-elemental data in accordance with soil type when plants of similar physiological age were compared, whereas this separation disappeared if plants of all ages were compared simultaneously. Isotope ratios (15N) of plants also proved to be a highly accurate property for classification of samples according to soil type. In contrast, the differences in 13C were too small to enable such classification. The differences in 15N among soils were so pronounced that separation of samples according to the physiological age of plants became redundant. However, 15N and the multi-elemental analysis revealed no differences between the three barley genotypes, indicating that the influence of soil chemistry and possibly also climate and agricultural practice was too large to allow an unique elemental fingerprint for the genotypes. This finding was substantiated by analyzing the multi-elemental composition of grain from two additional genotypes (Otira and Barthos) grown at the north and east locations, respectively. PCA showed not only that the elemental fingerprints of these two genotypes were similar to those of the others, but also that the soil in which the plant had been growing could be accurately predicted on the basis of the PCA scores from the genotypes Orthega, Barke, and Bartok. Similar conclusions could be drawn using 15N data.  相似文献   

16.
The direct absorption of atmospheric elements via soybean leaves has been studied using a radioactive multitra r technique. Soybean was cultivated until it bore seeds in a box under no-rain conditions and with introduction of multitracer-adsorbed cellulose powders. The radioactive nuclides of 40 elements were produced from Au target irradiated with14N, and the nuclides with relatively long half-life of the elements Sc, Mn, Co, As, Se, Rb, Sr, Y, Eu, Gd, Yb, Re, and Ir were dominantly observed in each part of soybean plant.  相似文献   

17.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration of trace and rare earth elements (REEs) in soils. Geochemical certified reference materials such as JLk-1, JB-1, and JB-3 were used for the validation of the analytical method. The measured values were in good agreement with the certified values for all the elements and were within 10% analytical error. Beach placer deposits of soils mainly from Odisha, on the east coast of India, have been selected to study selected trace and rare earth elements (REEs), to estimate enrichment factor (EF) and geoaccumulation index (Igeo) in the natural environment. Enrichment factor (EF) and geoaccumulation index (Igeo) results showed that Cr, Mn, Fe, Co, Zn, Y, Zr, Cd and U were significantly enriched, and Th was extremely enriched. The total content of REEs (ƩREEs) ranged from 101.3 to 12,911.3 µg g−1, with an average 2431.1 µg g−1 which was higher than the average crustal value of ΣREEs. A high concentration of Th and light REEs were strongly correlated, which confirmed soil enrichment with monazite minerals. High ratios of light REEs (LREEs)/heavy REEs (HREEs) with a strong negative Eu anomaly revealed a felsic origin. The comparison of the chondrite normalized REE patterns of soil with hinterland rocks such as granite, charnockite, khondalite and migmatite suggested that enhancement of trace and REEs are of natural origin.  相似文献   

18.
Summary In the present work the possibility of the utilization of ion-exchangers and polyurethane foams for separation and concentration of rare-earth elements (REE) from typical bastnesite-paresite ores is discussed. Further, the experimental conditions and performance parameters of the emission atomic spectrochemical determination of REE are given. Finally, the feasibilities of utilization of atomic absorption spectrometry are discussed for REE.  相似文献   

19.
Methods of digestion of samples by acidic dissolution and in fused sodium peroxide were modified in conformity with the chemical composition of basalts, periotites and stone meteorites as well as the method of REE pre-concentration by the lanthanum fluoride cycle. The enriching methods were used for the neutron-activation determination of the individual rare-earth elements in rocks and meteorites with a sensitivity up to 10−8%.  相似文献   

20.
The lanthanide elements, Th and U were measured in soils and agricultural crops collected in an area polluted by emissions from a phosphate fertilizer plant. Concentrations of the above elements in the soil and crop samples were determined by instrumental neutron activation analysis (INAA). Selected crop samples were also analyzed using radiochemical neutron activation analysis (RNAA) based on alkaline-oxidative fusion of the irradiated samples followed by precipitation of REE oxalates. Elevated levels of lanthanides, Th and U were found in some samples, especially in wheat chaff and parsley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号