首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of anchoring groups on the conductance of single molecules using alkanes terminated with dithiol, diamine, and dicarboxylic-acid groups as a model system. We created a large number of molecular junctions mechanically and analyzed the statistical distributions of the conductance values of the molecular junctions. Multiple sets of conductance values were found in each case. The I-V characteristics, temperature independence, and exponential decay of the conductance with the molecular length all indicate tunneling as the conduction mechanism for these molecules. The prefactor of the exponential decay function, which reflects the contact resistance, is highly sensitive to the anchoring group, and the decay constant is weakly dependent on the anchoring group. These observations are attributed to different electronic couplings between the molecules and the electrodes and alignments of the molecular energy levels relative to the Fermi energy level of the electrodes introduced by different anchoring groups. For diamine and dicarboxylic-acid groups, the conductance values are sensitive to pH due to protonation and deprotonation of the anchoring groups. Further insight into the binding strengths of these anchoring groups to gold electrodes is obtained by statistically analyzing the stretching length of molecular junctions.  相似文献   

2.
The conductance of single alkanedithiols covalently bound to gold electrodes has been studied by statistical analysis of repeatedly created molecular junctions. For each molecule, the conductance histogram reveals two sets of well-defined peaks, corresponding to two different conductance values. We have found that (1) both conductance values decrease exponentially with the molecular length with an identical decay constant, beta approximately equal to 0.84 A(-1), but with a factor of 5 difference in the prefactor of the exponential function. (2) The current-voltage curves of the two sets can be fit with the Simmons tunneling model. (3) Both conductance values are independent of temperature (between -5 and 60 degrees C) and the solvent. (4) Despite the difference in the conductance, the forces required to break the molecular junctions are the same, 1.5 nN. These observations lead us to believe that the conduction mechanism in alkanedithiols is due to electron tunneling or superexchange via the bonds along the molecules, and the two sets of conductance peaks are due to two different microscopic configurations of the molecule-electrode contacts.  相似文献   

3.
In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation‐dependent conductance is expected. Here, we fabricated single‐molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room‐temperature single‐molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either “ON” or “OFF” conductance states.  相似文献   

4.
Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as "control" junctions of the type carbon/TiO2/Ag/Au. The polarity of the "switching" is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions between high and low conductivity states, particularly near the switching threshold. The results are consistent with a switching mechanism based on Ag or Cu oxidation, transport of their ions through the TiO2, and reduction at the carbon to form a metal filament.  相似文献   

5.
The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.  相似文献   

6.
The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM‐BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat‐oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 Go , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long‐range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation‐controlled molecular junctions.  相似文献   

7.
Using molecular dynamics simulations with Tersoff reactive many-body potential for Si-Si, Si-C, and C-C interactions, we have calculated the thermal conductance at the interfaces between carbon nanotube (CNT) and silicon at different applied pressures. The interfaces are formed by axially compressing and indenting capped or uncapped CNTs against 2 x 1 reconstructed Si surfaces. The results show an increase in the interfacial thermal conductance with applied pressure for interfaces with both capped and uncapped CNTs. At low applied pressure, the thermal conductance at interface with uncapped CNTs is found to be much higher than that at interface with capped CNTs. Our results demonstrate that the contact area or the number of bonds formed between the CNT and Si substrate is key to the interfacial thermal conductance, which can be increased by either applying pressure or by opening the CNT caps that usually form in the synthesis process. The temperature and size dependences of interfacial thermal conductance are also simulated. These findings have important technological implications for the application of vertically aligned CNTs as thermal interface materials.  相似文献   

8.
A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge‐transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the π‐subsystems along the molecular backbones. Out‐of‐plane rotation of the phenyl rings is confirmed in the solid state by means of X‐ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced π‐conjugation on the resonant charge transport is studied at the single‐molecule level by using the mechanically controllable break‐junction technique. Experiments are performed under ultra‐high‐vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge‐carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.  相似文献   

9.
Carbon/molecule/copper molecular electronic junctions were fabricated by metal deposition of copper onto films of various thicknesses of fluorene (FL), biphenyl (BP), and nitrobiphenyl (NBP) covalently bonded to flat, graphitic carbon. A "crossed-wire" junction configuration provided high device yield and good junction reproducibility. Current/voltage characteristics were investigated for 69 junctions with various molecular structures and thicknesses and at several temperatures. The current/voltage curves for all cases studied were nearly symmetric, scan rate independent, repeatable at least thousands of cycles and exhibited negligible hysteresis. Junction conductance was strongly dependent on the dihedral angle between phenyl rings and on the nature of the molecule/copper "contact". Junctions made with NBP showed a decrease in conductivity of a factor of 1300 when the molecular layer thickness increased from 1.6 to 4.5 nm. The slope of ln(i) vs layer thickness for both BP and NBP was weakly dependent on applied voltage and ranged from 0.16 to 0.24 A(-1). These attenuation factors are similar to those observed for similar molecular layers on modified electrodes used to study electrochemical kinetics. All junctions studied showed weak temperature dependence in the range of approximately 325 to 214 K, implying activation barriers in the range of 0.06 to 0.15 eV. The carbon/molecule/copper junction structure provides a robust, reproducible platform for investigations of the dependence of electron transport in molecular junctions on both molecular structure and temperature. Furthermore, the results indicate that junction conductance is a strong function of molecular structure, rather than some artifact resulting from junction fabrication.  相似文献   

10.
We have studied the adsorption of mercaptopropionic acid, 2,2'-bipyridine, and dopamine onto electrochemically fabricated Cu nanowires. The nanowires are atomically thin with conductance quantized near integer multiples of 2e(2)/h. Upon molecular adsorption, the quantized conductance decreases to a fractional value, due to the scattering of the conduction electrons by the adsorbates. The decrease is as high as 50% for the thinnest nanowires whose conductance is at the lowest quantum step, and smaller for thicker nanowires with conductance at higher quantum steps. The adsorbate-induced conductance changes depend on the binding strengths of the molecules to the nanowires, which are in the order of mercaptopropionic acid, 2,2'-bipyridine, and dopamine, from strongest to weakest. The sensitive dependence of the quantized conductance on molecular adsorption may be used for molecular detection.  相似文献   

11.
Selective excitations of specific vibronic modes in position space are realized in single naphthalocyanine molecules adsorbed on an ultrathin alumina film by a scanning tunneling microscope at low temperature. Distinct spatial distributions are imaged for the different vibronic modes, which are in accordance with spectra recorded over different points of the molecule and its orbital structure. These distinct vibronic images, together with the differential conductance images and calculated molecular orbitals, lead to vibrational excitations that are associated with the doubly degenerate lowest unoccupied molecular orbitals (LUMO)--LUMO-α and LUMO-β. These results reveal the presence of different molecular conformations on the surface and the nature of the electron-vibrational coupling.  相似文献   

12.
Crown ethers have the remarkable property of recognizing and binding specific metal cations in complex mixtures. We propose to combine molecular recognition with molecular electric conductance. The question we address is: can the event of binding a cation be sensed by a change in conductance? Specifically, we study a short molecular wire (MW) containing a crown-6 molecule connected via sulfur atoms to two gold atomic wires acting as metallic leads. Upon binding a cation, the density of states of the system is only slightly affected. This reflects the fact that the cation binding is largely electrostatic in nature and is accompanied by little electronic reorganization. Yet, the cationic binding does significantly lower conductance. We also identify strong interference affecting the conductance. A striking feature is the insensitivity of conductance to the type of ligand with the exception of the proton.  相似文献   

13.
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.  相似文献   

14.
利用第一性原理非平衡态格林函数方法研究了不同构象下二苯乙炔分子导线的电子输运性质. 从分子轨道空间分布和透射谱等方面讨论了外加偏压下分子构象对电子传递特性的影响及内在机理. 结果表明, 随着分子扭转角的增加, 分子的LUMO-HOMO能隙增加, 透射峰显著降低; 外加偏压下, 分子的HOMO分布向低电势端移动, LUMO向高电势端移动. 电流-电压计算表明, 平面构象分子的导电性最好; 随着扭转角的增加, 分子的导电性变差; 垂直构象分子的导电性最差. 最后给出了分子导线电子传递性质与分子构象的定量关系.  相似文献   

15.
The electronic properties of molecular junctions of the general type carbon/molecule/TiO2Au were examined as examples of "molecular heterojunctions" consisting of a molecular monolayer and a semiconducting oxide. Junctions containing fluorene bonded to pyrolyzed photoresist film (PPF) were compared to those containing Al2O3 instead of fluorene, and those with only the TiO2 layer. The responses to voltage sweep and pulse stimulation were strongly dependent on junction composition and temperature. A transient current response lasting a few milliseconds results from injection and trapping of electrons in the TiO2 layer, and occurred in all three junction types studied. Conduction in PPFTiO2Au junctions is consistent with space charge limited conduction at low voltage, then a sharp increase in current once the space charge fills all the traps. With fluorene present, there is a slower, persistent change in junction conductance which may be removed by a reverse polarity pulse. This "memory" effect is attributed to a redox process in the TiO2 which generates TiIII and/or TiII, which have much higher conductance than TiO2 due to the presence of conduction band electrons. The redox process amounts to "dynamic doping" of the TiO2 layer by the imposed electric field. The memory effect arises from a combination of the properties of the molecular and oxide layers, and is a special property of the molecular heterojunction configuration.  相似文献   

16.
In this paper, ice nanotubes confined in carbon nanotubes are investigated by molecular dynamics. The trigonal, square, pentagonal, and hexagonal water tubes are obtained, respectively. The current-voltage (I-V) curves of water nanotubes are found to be nonlinear, and fluctuations of conductance spectra of these ice nanotubes show that the transport properties of ice nanotubes are quite different from those of bulk materials. Our studies indicate that the conductance gap of ice nanotube is related to the difference value from the Fermi energy EF to the nearest molecular energy level E0. Increasing the diameter of a water molecular nanostructure results in the increase of the conductance.  相似文献   

17.
利用基于密度泛函理论的格林函数方法, 计算了Al-C60-Al分子结的电子输运特性. 考虑了C60分子在铝电极表面的原子结构弛豫, 计算结果表明共振传导是Al-C60-Al分子结电子输运的主要特征, 在费米能级附近的电导约为1.14G0 (G0=2e2/h). 投影态密度(PDOS)分析表明, Al-C60-Al分子结的电子输运主要通过C60分子的最低空分子轨道(LUMO)和次低空分子轨道(LUMO+1)进行. 讨论了C60分子和铝电极之间距离的变化对其电子输运特性的影响.  相似文献   

18.
Herein, we report the first room temperature switchable Fe(iii) molecular spin crossover (SCO) tunnel junction. The junction is constructed from [FeIII(qsal-I)2]NTf2 (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate) molecules self-assembled on graphene surfaces with conductance switching of one order of magnitude associated with the high and low spin states of the SCO complex. Normalized conductance analysis of the current–voltage characteristics as a function of temperature reveals that charge transport across the SCO molecule is dominated by coherent tunnelling. Temperature-dependent X-ray absorption spectroscopy and density functional theory confirm the SCO complex retains its SCO functionality on the surface implying that van der Waals molecule—electrode interfaces provide a good trade-off between junction stability while retaining SCO switching capability. These results provide new insights and may aid in the design of other types of molecular devices based on SCO compounds.

Herein, we report the first room temperature switchable Fe(iii) molecular spin crossover (SCO) tunnel junction.  相似文献   

19.
The impedance effect on the ion transport of lithium chloride through temperature‐ and pH‐sensitive gel membranes was investigated. Both conductance and loss tangent show a relatively high value at temperatures near the lower critical solution temperature (14°C), followed by an abrupt drop with a further rise in temperature. The Figure shows an example of changes in absolute complex conductance (Y ), real conductance (G ), and imaginary conductance (B) for a poly(acryloyl‐L ‐proline methyl ester) gel membrane.  相似文献   

20.
Summary Electrical conductance studies have been made to investigate the nature of aqueous solutions of Eriochrome Cyanine R. The reagent has been found to behave as a colloidal electrolyte. The temperature of zero conductance has been determined to be −23.5 °C and the temperature coefficient per degree centigrade per hundred of the conductance at 35 °C varies between 1.75 and 1.80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号