首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A simple method has been developed for the preconcentration of mercury based on the adsorption of its diphenylthiocarbazone complex on a neutral alumina column. The influence of acidity, eluting agents, stability of the column, sample volume and interfering ions has been investigated in detail. The adsorbed complex could be eluted using environmentally benign polyethylene glycol (PEG 400) and the concentration of mercury was determined by visible spectrophotometry at a wavelength maximum of 520nm. A detection limit of 4microgL(-1) could be achieved and the developed procedure was successfully applied for the determination of mercury in spiked water samples and city waste incineration ash (CRM176). The preconcentration factor attainable for quantitative recovery (>95%) of mercury(II) was 100 for a 1000mL sample volume.  相似文献   

2.
A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of mercury as its 2,2' diamino-4,4' bithiazole (DABTZ) complex by using octadecylsilica cartridges and spectrophotometry is presented. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of DABTZ, type and least amount of eluent for elution of mercury complex from cartridges, break through volume and limit of detection were evaluated. Also the effects of various cationic and anionic interferences on percent recovery of mercury were studied. Average extraction efficiency > 90% was obtained by elution of the cartridge with minimal amount of solvent in the presence of interferences. A preconcentration factor of 152 and a detection limit of 10.92 ng mL(-1) were obtained. The method was applied to the recovery and determination of mercury in different water samples.  相似文献   

3.
A simple methodology has been developed for the solid phase extraction of lead based on the adsorption of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column. The effect of various parameters such as eluting agents, stability of the column, sample volume, interfering ions, etc. were studied in detail. The adsorbed complex could be eluted using acetone and the concentration of lead was determined using visible spectrophotometry at a wavelength maximum of 486nm. A detection limit of 3.5microgL(-1) could be achieved and the validity of the proposed method was checked in spiked tap water, well water and industrial wastewater samples. The relative standard deviation of the method was found to be 3.0%. The highest preconcentration factor attainable for quantitative recovery (>95%) of lead was 25 for a 250mL sample volume.  相似文献   

4.
A new method for selective solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed by using poly-allylthiourea as a new extractant. The procedure is based on the retention of analyte in the form of thiourea complex on a mini column of polymer resin. The effects of pH, eluent type, eluent concentration, sample volume, sample flow rate, and foreign ions on the recovery of the analyte were investigated using model solutions. At optimal pH value, the extraction capacity of the new sorbent was 1.13 mmol g?1. The adsorption behavior of mercury(II) on the sorbent can be described by a Langmuir adsorption isotherm equation. The method was validated by analyzing a certified reference material with the results being in agreement with those quoted by manufacturers. The method was applied to the determination of trace inorganic mercury(II) in natural water samples and vegetables with satisfactory results.  相似文献   

5.
A novel approach has been developed for the solid phase extraction of chromium(VI) based on the adsorption of its diphenylcarbazide complex on a mixture of acid activated montmorillonite (AAM)-silica gel column. The effect of various parameters such as acidity, stability of the column, sample volume, interfering ions, etc., were studied in detail. The adsorbed complex could be easily eluted using polyethylene glycol-sulfuric acid mixture and the concentration of chromium has been determined using visible spectrophotometry. The calibration graph was linear in the range 0-1microgmL(-1) chromium(VI) with a detection limit of 6microgL(-1). A highest preconcentration factor of 25 could be obtained for 250mL sample volume using glass wool as support for the mixed bed adsorbent. Chromium(VI) could be effectively separated from other ions such as nickel, copper, zinc, chloride, sulfate, nitrate, etc., and the method has been successfully applied to study the recovery of chromium in electroplating waste water and spiked water samples.  相似文献   

6.
A new 2-mercaptobenzothiazole loaded Bio-Beads SM-7 resin has been prepared and its analytical properties were established. The sorbent was applied to the separation and preconcentration of inorganic and alkylmercury from natural waters. Optimum conditions of separation as pH, flow rate on column, volume of samples and desorbing agent were established. The cold vapour atomic absorption method determination of both forms of mercury after their successive reduction by tin(II) was used. The low limit of determination for this method was established as 10 ng l(-1) for 1.0 l water sample. Accuracy and precision of the method was estimated by using test water standards and samples of natural water spiked with known amounts of mercury species.  相似文献   

7.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometric determination with arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was success-fully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

8.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometry determination with Arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was successfully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

9.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

10.
《Analytical letters》2012,45(3):489-501
ABSTRACT

By using the Pb-4-methylpiperidinedithiocarbamate complex (Pb(4-MPDC)2) on microcrystalline naphthalene in a column a method was developed for the preconcentration of copper in water samples prior to its determination by FAAS. In this method, copper in liquid phase quantitatively replaces lead on the Pb(4-MPDC)2-naphthalene solid phase in the column, forming solid Cu(4-MPDC)2 complex.

Afterwards, copper on Cu(4-MPDC)2-naphthalene can be easily eluted by potassium cyanide into the aqueous phase, and the Cu is measured by FAAS. The optimum experimental parameters such as pH, flow rate, sample volume, Pb(4-MPDC)2-naphthalene ratio, concentration of the potassium cyanide solution and effect of matrix ions for the preconcentration of copper were investigated. The obtained recovery was nearly 100 %, when the enrichment factor was 100 for standard solutions and spiked water samples. The proposed method has been employed for the determination of copper in various standard metal alloys and natural water samples.  相似文献   

11.
This work focuses on the development of a suitable working procedure for preconcentration of amino acids enantiomers from water samples using a solid phase extraction. The three types of ion exchangers with various capabilities have been used. The effect of experimental conditions in SPE procedure employing strong anion exchange (SAX), weak (WCX) and strong cation exchange (SCX) cartridges (such as sample volume, pH, origin of elution solvent and its volume) on effective preconcentration of the model set of amino acids has been studied in detail. The enantiomers of isolated and preconcentrated amino acids have been analysed by GC on three capillary columns coated with chiral selectors. The different amino acids derivatives have been investigated in order to achieve optimal resolution of biogenic amino acids and their enantiomers. The best separation of amino acid enantiomers has been obtained on a Chirasil-L-Val column analysing their N-TFA methyl esters. It has been shown that SCX-SPE cartridge with sulfonic groups attached on silicagel support is most suitable for isolation and preconcentration of amino acids from water samples. For this sample treatment procedure, the overall recovery of extraction process has been calculated as an average value from three measurements. It has been found, that recoveries are practically identical for both enantiomers of a particular amino acid and varies in the range 75-99% depending on the type of amino acid. The effectivity of this sample preparation and GC method has been verified by preconcentration of amino acids from orange juice fortified by racemic mixture of some selected amino acids.  相似文献   

12.
A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of uranyl as its 2,2′‐diamino‐4,4′‐bithiazole (DABTZ) complex by using octadecylsilica columns and spectrophotometry is presented. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of DABTZ, type and least amount of eluent for elution of uranyl complex from columns, break‐through volume and limit of detection were evaluated. Also the effects of various cationic and anionic interferences on percent recovery of uranyl were studied. Average extraction efficiency of ca. 90% was obtained by elution of the column with minimal amount of solvent in the presence of interferences. The average preconcentration factor, 136 and a detection limit 0.32 ng·mL?1 were obtained. The method was applied to the recovery and determination of uranyl in different water samples.  相似文献   

13.
Tunçeli A  Türker AR 《Talanta》2000,51(5):889-894
A method of silver preconcentration by using a column containing Amberlite XAD-16 resin and this future determination by a flame AAS after elution is proposed. The effect of the factors such as pH, the nature of complexing agent, sample volume, flow rate, the type and concentration of elution solution on the preconcentration efficiency have been investigated. The influence of some matrix elements on the recovery of silver were also examined. It was found, that the quantitative recovery of thiocyanate complex of silver was obtained from nitric acid solution (pH 2) as 99.20+/-0.07% at the 95% confidence level. A preconcentration factor up to 75 could be obtained. The detection limit of silver was 0.047 mg l(-1). The adsorption of silver onto Amberlite XAD-16 can be formally described by a Langmuir equation with maximum adsorption capacity 4.66 mg g(-1) (0.043 mmol g(-1)). The proposed method was applied to determination of silver in standard alloy with relative error 6.25%.  相似文献   

14.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

15.
When groundwater reservoirs situated in agriculturally used areas are assigned as future potable water supplies, it has to be provided that traces of plant protection agents used in this area can be monitored in this groundwater. A method is described for the simultaneous quantitative determination of atrazine, pyrazon and lindane in potable water at the (sub-)ppb level. An adsorption column filled with Amberlite XAD-2 microporous resin advantageously replaces other preconcentration techniques. The concentrated eluate is analyzed by capillary gas chromatography without further purification. The recovery is 80% for atrazine and lindane at the 0.1 ppb level and 40% for pyrazon (1 ppb). The method was tested using tap water from the public water supply network. The complete procedure including sample preparation, preconcentration by adsorption on a macroporous resin, elution with diethyl ether, evaporation to dryness, addition of internal standard solution and capillary gas Chromatographic analysis is carried out in less than three hours (sample volume: 11).  相似文献   

16.
1,5-Bis[(2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex) has been used for the on-line preconcentration of mercury from biological samples and waters prior to its determination by inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 2 M HNO(3) and mixed on-line with SnCl(2). The optimum experimental conditions were evaluated for the continuous preconcentration of Hg, the direct generation of mercury vapour and the final determination of this element by ICP-AES. The enrichment, together with low blank levels of the optimized procedure, allow the simple determination of this toxic element at concentrations down to a few nanograms per milliliter. The proposed method has a linear calibration range 5-1000 ng ml(-1) of mercury, with a detection limit of 4 ng ml(-1) (S/N=3) and a sampling rate of 40 h(-1), investigated with a 9 ml sample volume. The precision of the method (evaluated as the relative standard deviation obtained after analyzing ten series of ten replicates) was +/-3.6% at the 10 ng ml(-1) level of Hg(II) and +/-1.3% at the 100 ng ml(-1) level. The accuracy of the method was examined by the analysis of certified reference materials.  相似文献   

17.
Khdary NH  Howard AG 《The Analyst》2011,136(14):3004-3009
A nanoscavenger of mercaptopropyl-modified silica microparticles has been developed for the determination of trace levels of mercury(II) in water. The synthesis of silica microparticles nanoscavengers is carried out by modification of pre-formed silica particles with mercaptopropyltrimethoxysilane or by incorporating the thiol modification agent during the growth of the silica particles. The silica nanoscavengers were characterized by SEM, TGA, particle analyzer, IR and the parameters influencing the extraction and recovery phases of the preconcentration process were performed by AAS. The results show that careful choice of particle size and surface characteristics produce a new mercapto-silica-nanoscavenger that disperses in water as a quasi-stable sol. This permits the facile recovery of the mercury-loaded nanoscavenger particles. No agitation is required during the mercury extraction as the dispersion is maintained by Brownian motion and slow gravitational sedimentation. The technique overcomes a number of problems, such as cross-contamination and decreases in mercury concentration during sample transportation to the laboratory. Recovery achieved reaches >97 ± 4% over a wide range of preconcentration factors. At a preconcentration factor of 50 the limit of detection (3σ) was 0.19 ng mL(-1). The method is environmentally friendly as only 300 mg of mercapto-nanoscavenger is used, no organic solvent is required for the extraction and the experiment is performed without the need for manual or mechanical agitation.  相似文献   

18.
We have developed a cloud point extraction procedure based on room temperature ionic liquid for the preconcentration and determination of mercury in water samples. Mercury ion was quantitatively extracted with tetraethyleneglycol-bis(3- methylimidazolium) diiodide in the form of its complex with 5,10,15,20-tetra-(4-phenoxyphenyl)porphyrin. The complex was back extracted from the room temperature ionic liquid phase into an aqueous media prior to its analysis by spectrofluorimetry. An overall preconcentration factor of 45 was accomplished upon preconcentration of a 20?mL sample. The limit of detection obtained under the optimal conditions is 0.08?μg mL?1, and the relative standard deviation for 10 replicate assays (at 0.5?g mL?1 of Hg) was 2.4%. The method was successfully applied to the determination of mercury in tap, river and mineral water samples.
Figure
In this work, a novel and sensitive analytical methodology for mercury preconcentration and determination in different water samples using ionic liquid was developed. The use of room temperature ionic liquid‘s biphasic systems as an alternative to conventional solvents offers several advantages including safety and high capacity to extract Hg(II) and other elements with high recoveries. ?onic liquid in combination with porphyrin complexing reagent was successfully applied in this study for the extraction and preconcentration of Hg(II). Likewise, a fast and quantitative back extraction of the analyte from room temperature ionic liquid phase into aqueous phase was possible, allowing its further determination by spectrofluorimetry. The preconcentration method allowed mercury determination in tap, river and mineral water samples at trace levels with high accuracy and reproducibility.  相似文献   

19.
A separation and preconcentration method based on solid-phase extraction using sulfoxide adsorbent was developed for the determination of Hg(II) in natural water samples by inductively coupled plasma mass spectrometry (ICP-MS). The sulfoxide adsorbent was packed into a commercially available syringe-driven column (with a bed volume of 1.0 mL), which permitted off-line sample loading and on-line elution/measurement. The optimized operating conditions were as follows: sample condition for Hg(II) adsorption, 0.5% HCl; sample-loading flow rate, 10 mL min(-1); eluent for recovering Hg(II), 1% cysteine water solution. A test using multi-element mixed solution showed that most trace elements in natural water, except for Bi, could be completely separated from Hg(II). The recoveries of Hg(II) were 99.0 ± 3.2 and 100.7 ± 4.3%, respectively, when 0.64 and 0.16 ng mL(-1) of Hg(II) were added into the test sample. The detection limit of Hg(II) using a quadrupole ICP-MS after 10-fold preconcentration was 1.5 pg mL(-1). The blank value was 2.8 ± 0.5 pg mL(-1).  相似文献   

20.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP-AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP-AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min(-1) and sequentially eluted directly into the ICP-AES with 3 mol L(-1) HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL(-1) level in the eluate is acceptable - less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g(-1) and a capacity of approximately 5 mg g(-1) for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L(-1)) in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号