首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the conformational dependence of molecular mechanics atomic charges for proteins by calculating the charges fitted to the quantum mechanical (QM) electrostatic potential (ESP) for all atoms in complexes between avidin and seven biotin analogues for 20 snapshots from molecular dynamics simulations. We have studied how various other charge sets reproduce those charges. The QM charges, even if averaged over all snapshots or all residues, in general have a larger magnitude than standard Amber charges, indicating that the restraint toward zero in the restrained ESP method is too strong. This has a significant influence on the electrostatic conformational energies and the interaction energy between the biotin ligand and the protein, giving a difference between the QM and Amber charges of 43 and 8 kJ/mol for the negatively charged and neutral biotin analogues, respectively (3-4%). However, this energy difference is strongly reduced if the solvation energy (calculated by the Poisson-Boltzmann or Generalized Born methods) is added, viz., to 7 kJ/mol for charged and 3 kJ/mol for uncharged ligand. In fact, charges need to be recalculated with a QM method only for residues within 7 or 4 A of the ligand, if the error should be less than 4 kJ/mol. Unfortunately, the QM charges do not give significantly better MM/PBSA estimates of ligand-binding affinities than standard Amber charges.  相似文献   

2.
Heimdal J  Kaukonen M  Srnec M  Rulí?ek L  Ryde U 《Chemphyschem》2011,12(17):3337-3347
We used two theoretical methods to estimate reduction potentials and acidity constants in Mn superoxide dismutase (MnSOD), namely combined quantum mechanical and molecular mechanics (QM/MM) thermodynamic cycle perturbation (QTCP) and the QM/MM-PBSA approach. In the latter, QM/MM energies are combined with continuum solvation energies calculated by solving the Poisson-Boltzmann equation (PB) or by the generalised Born approach (GB) and non-polar solvation energies calculated from the solvent-exposed surface area. We show that using the QTCP method, we can obtain accurate and precise estimates of the proton-coupled reduction potential for MnSOD, 0.30±0.01 V, which compares favourably with experimental estimates of 0.26-0.40 V. However, the calculated potentials depend strongly on the DFT functional used: The B3LYP functional gives 0.6 V more positive potentials than the PBE functional. The QM/MM-PBSA approach leads to somewhat too high reduction potentials for the coupled reaction and the results depend on the solvation model used. For reactions involving a change in the net charge of the metal site, the corresponding results differ by up to 1.3 V or 24 pK(a) units, rendering the QM/MM-PBSA method useless to determine absolute potentials. However, it may still be useful to estimate relative shifts, although the QTCP method is expected to be more accurate.  相似文献   

3.
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD?=?3–8 kJ/mol and R2?=?0.1–0.9), but the results were improved compared to previous studies of this system with similar methods.  相似文献   

4.
In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

5.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   

6.
We report systematic quantum mechanics‐only (QM‐only) and QM/molecular mechanics (MM) calculations on an enzyme‐catalyzed reaction to assess the convergence behavior of QM‐only and QM/MM energies with respect to the size of the chosen QM region. The QM and MM parts are described by density functional theory (typically B3LYP/def2‐SVP) and the CHARMM force field, respectively. Extending our previous work on acetylene hydratase with QM regions up to 157 atoms (Liao and Thiel, J. Chem. Theory Comput. 2012, 8, 3793), we performed QM/MM geometry optimizations with a QM region M4 composed of 408 atoms, as well as further QM/MM single‐point calculations with even larger QM regions up to 657 atoms. A charge deletion analysis was conducted for the previously used QM/MM model ( M3a , with a QM region of 157 atoms) to identify all MM residues with strong electrostatic contributions to the reaction energetics (typically more than 2 kcal/mol), which were then included in M4 . QM/MM calculations with this large QM region M4 lead to the same overall mechanism as the previous QM/MM calculations with M3a , but there are some variations in the relative energies of the stationary points, with a mean absolute deviation (MAD) of 2.7 kcal/mol. The energies of the two relevant transition states are close to each other at all levels applied (typically within 2 kcal/mol), with the first (second) one being rate‐limiting in the QM/MM calculations with M3a ( M4 ). QM‐only gas‐phase calculations give a very similar energy profile for QM region M4 (MAD of 1.7 kcal/mol), contrary to the situation for M3a where we had previously found significant discrepancies between the QM‐only and QM/MM results (MAD of 7.9 kcal/mol). Extension of the QM region beyond M4 up to M7 (657 atoms) leads to only rather small variations in the relative energies from single‐point QM‐only and QM/MM calculations (MAD typically about 1–2 kcal/mol). In the case of acetylene hydratase, a model with 408 QM atoms thus seems sufficient to achieve convergence in the computed relative energies to within 1–2 kcal/mol.Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The performance of different link atom based frontier treatments in QM/MM simulations was evaluated critically with SCC-DFTB as the QM method. In addition to the analysis of gas-phase molecules as in previous studies, an important element of the present work is that chemical reactions in realistic enzyme systems were also examined. The schemes tested include all options available in the program CHARMM for SCC-DFTB/MM simulation, which treat electrostatic interactions due to the MM atoms close to the QM/MM boundary in different ways. In addition, a new approach, the divided frontier charge (DIV), has been implemented in which the partial charge associated with the frontier MM atom ("link host") is evenly distributed to the other MM atoms in the same group. The performance of these schemes was evaluated based on properties including proton affinities, deprotonation energies, dipole moments, and energetics of proton transfer reactions. Similar to previous work, it was found that calculated proton affinities and deprotonation energies of alcohols, carbonic acids, amino acids, and model DNA bases are very sensitive to the link atom scheme; the commonly used single link atom approach often gives error on the order of 15 to 20 kcal/mol. Other schemes give better and, on average, mutually comparable results. For proton transfer reactions, encouragingly, both activation barriers and reaction energies are fairly insensitive (within a typical range of 2-4 kcal/mol) to the link atom scheme due to error cancellation, and this was observed for both gas-phase and enzyme systems. Therefore, the effect of using different link atom schemes in QM/MM simulations is rather small for chemical reactions that conserve the total charge. Although the current study used an approximate DFT method as the QM level, the observed trends are expected to be applicable to QM/MM methods with use of other QM approaches. This observation does not mean to encourage QM/MM simulations without careful benchmark in the study of specific systems, rather it emphasizes that other technical details, such as the treatment of long-range electrostatics, tend to play a more important role and need to be handled carefully.  相似文献   

8.
We used molecular dynamics simulation and free energy perturbation (FEP) methods to investigate the hydride-ion transfer step in the mechanism for the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a novel substrate by the enzyme dihydrofolate reductase (DHFR). The system is represented by a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1 semiempirical molecular orbital method for the reacting substrate and NADPH cofactor fragments, the AMBER force field for DHFR, and the TIP3P model for solvent water. The FEP calculations were performed for a number of choices for the QM system. The substrate, 8-methylpterin, was treated quantum mechanically in all the calculations, while the larger cofactor molecule was partitioned into various QM and MM regions with the addition of “link” atoms (F, CH3, and H). Calculations were also carried out with the entire NADPH molecule treated by QM. The free energies of reaction and the net charges on the NADPH fragments were used to determine the most appropriate QM/MM model. The hydride-ion transfer was also carried out over several FEP pathways, and the QM and QM/MM component free energies thus calculated were found to be state functions (i.e., independent of pathway). A ca. 10 kcal/mol increase in free energy for the hydride-ion transfer with an activation barrier of ca. 30 kcal/mol was calculated. The increase in free energy on the hydride-ion transfer arose largely from the QM/MM component. Analysis of the QM/MM energy components suggests that, although a number of charged residues may contribute to the free energy change through long-range electrostatic interactions, the only interaction that can account for the 10 kcal/mol increase in free energy is the hydrogen bond between the carboxylate side chain of Glu30 (avian DHFR) and the activated (protonated) substrate. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 977–988, 1998  相似文献   

9.
This study examines the contribution of electrostatic and polarization to the interaction energy in a variety of molecular complexes. The results obtained from the Kitaura-Morokuma (KM) energy decomposition analysis at the HF/6-31G(d) level indicate that, for intermolecular distances around the equilibrium geometries, the polarization energy can be determined as the addition of the polarization energies of interacting blocks, as the mixed polarization term is typically negligible. Comparison of KM and QM/MM results shows that the electrostatic energy determined in the KM method is underestimated (in absolute value) by QM/MM methods. The reason of such underestimation can be attributed to the simplified representation of treating the interaction between overlapping charge distribution by the interaction of a QM molecule with a set of point charges. Nevertheless, the polarization energies calculated by KM and QM/MM methods are in close agreement. Finally, a consistent, automated strategy to derive charge distributions that include implicitly polarization effects in pairwise, additive force fields is presented. The strategy relies in the simultaneous fitting of electrostatic and polarization energies computed by placing a suitable perturbing particle at selected points around the molecule. The suitability of these charges to describe molecular interactions is discussed.  相似文献   

10.
We have carried out quantum mechanical (QM) and QM/MM (combined QM and molecular mechanics) calculations, as well as molecular dynamics (MD) simulations to study the binding of a series of six RAPTA (Ru(II)-arene-1,3,5-triaza-7-phosphatricyclo-[3.3.1.1] decane) complexes with different arene substituents to cathepsin B. The recently developed QM/MM-PBSA approach (QM/MM combined with Poisson–Boltzmann solvent-accessible surface area solvation) has been used to estimate binding affinities. The QM calculations reproduce the antitumour activities of the complexes with a correlation coefficient (r 2) of 0.35–0.86 after a conformational search. The QM/MM-PBSA method gave a better correlation (r 2 = 0.59) when the protein was fixed to the crystal structure, but more reasonable ligand structures and absolute binding energies were obtained if the protein was allowed to relax, indicating that the ligands are strained when the protein is kept fixed. In addition, the best correlation (r 2 = 0.80) was obtained when only the QM energies were used, which suggests that the MM and continuum solvation energies are not accurate enough to predict the binding of a charged metal complex to a charged protein. Taking into account the protein flexibility by means of MD simulations slightly improves the correlation (r 2 = 0.91), but the absolute energies are still too large and the results are sensitive to the details in the calculations, illustrating that it is hard to obtain stable predictions when full flexible protein is included in the calculations.  相似文献   

11.
The free energy change associated with the isomerization reaction of glycine in water solution has been studied by a hybrid quantum mechanical/molecular mechanical (QM/MM) approach combined with the theory of energy representation (QM/MM-ER) recently developed. The solvation free energies for both neutral and zwitterionic form of glycine have been determined by means of the QM/MM-ER simulation. The contributions of the electronic polarization and the fluctuation of the QM solute to the solvation free energy have been investigated. It has been found that the contribution of the density fluctuation of the zwitterionic solute is estimated as -4.2 kcal/mol in the total solvation free energy of -46.1 kcal/mol, while that of the neutral form is computed as -3.0 kcal/mol in the solvation free energy of -15.6 kcal/mol. The resultant free energy change associated with the isomerization of glycine in water has been obtained as -7.8 kcal/mol, in excellent agreement with the experimental data of -7.3 or -7.7 kcal/mol, implying the accuracy of the QM/MM-ER approach. The results have also been compared with those computed by other methodologies such as the polarizable continuum model and the classical molecular simulation. The efficiency and advantage of the QM/MM-ER method has been discussed.  相似文献   

12.
The reduction potentials of the AnO(2)(H(2)O)(5)(2+)/AnO(2)(H(2)O)(5)(+) couple (An = U, Np, Pu, and Am) and Fe(H(2)O)(6)(3+) to Fe(H(2)O)(6)(2+) in aqueous solution were calculated at MP2, CASPT2, and CCSD(T) levels of theory. Spin-orbit effects for all species were estimated at the CASSCF level. Solvation of the hydrated metal cations was modeled both by polarizable conductor model (PCM) calculation and by solvating the solutes with over one thousand TIP3P water molecules in the QM/MM framework. The redox reaction energy calculated by QM/MM method agreed well with the PCM method after corrections using the classical Born formula for the contribution from the rest of the solvation sphere and correction for dynamic response of solvent polarization in the MM region. Calculated reduction potentials inclusive of spin-orbit effect, zero-point energy, thermal corrections, entropy effect, and PCM solvation energy were found to be comparable with experimental data. The difference between CASPT2 calculated and experimental reduction energies were less than 35 kJ/mol in all cases, which ensures that CASPT2 (and CCSD(T)) calculations provide reasonable estimates of the thermochemistry of these reactions.  相似文献   

13.
We describe a coupling parameter, that is, perturbation, approach to effectively create and annihilate atoms in the quantum mechanical Hamiltonian within the closed shell restricted Hartree-Fock formalism. This perturbed quantum mechanical atom (PQA) method is combined with molecular mechanics (MM) methods (PQA/MM) within a molecular dynamics simulation, to model the protein environment (MM region) effects that also make a contribution to the overall free energy change. Using the semiempirical PM3 method to model the QM region, the application of this PQA/MM method is illustrated by calculation of the relative protonation free energy of the conserved OD2 (Asp27) and the N5 (dihydrofolate) proton acceptor sites in the active site of Escherichia coli dihydrofolate reductase (DHFR) with the bound nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. For a number of choices for the QM region, the relative protonation free energy was calculated as the sum of contributions from the QM region and the interaction between the QM and MM regions via the thermodynamic integration (TI) method. The results demonstrate the importance of including the whole substrate molecule in the QM region, and the overall protein (MM) environment in determining the relative stabilities of protonation sites in the enzyme active site. The PQA/MM free energies obtained by TI were also compared with those estimated by a less computationally demanding nonperturbative method based on the linear response approximation (LRA). For some choices of QM region, the total free energies calculated using the LRA method were in very close agreement with the PQA/MM values. However, the QM and QM/MM component free energies were found to differ significantly between the two methods.  相似文献   

14.
Standard molecular mechanics (MM) force fields predict a nearly linear decrease in hydration free energy with each successive addition of a methyl group to ammonia or acetamide, whereas a nonadditive relationship is observed experimentally. In contrast, the non-additive hydration behavior is reproduced directly using a quantum mechanics (QM)/MM-based free-energy perturbation (FEP) method wherein the solute partial atomic charges are updated at every window. Decomposing the free energies into electrostatic and van der Waals contributions and comparing the results with the corresponding free energies obtained using a conventional FEP method and a QM/MM method wherein the charges are not updated suggests that inaccuracies in the electrostatic free energies are the primary reason for the inability of the conventional FEP method to predict the experimental findings. The QM/MM-based FEP method was subsequently used to evaluate inhibitors of the diabetes drug target fructose-1,6-bisphosphatase adenosine 5'-monophosphate and 6-methylamino purine riboside 5'-monophosphate. The predicted relative binding free energy was consistent with the experimental findings, whereas the relative binding free energy predicted using the conventional FEP method differed from the experimental finding by an amount consistent with the overestimated relative solvation free energies calculated for alkylamines. Accordingly, the QM/MM-based FEP method offers potential advantages over conventional FEP methods, including greater accuracy and reduced user input. Moreover, since drug candidates often contain either functionality that is inadequately treated by MM (e.g., simple alkylamines and alkylamides) or new molecular scaffolds that require time-consuming development of MM parameters, these advantages could enable future automation of FEP calculations as well as greatly increase the use and impact of FEP calculations in drug discovery.  相似文献   

15.
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.  相似文献   

16.
The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.  相似文献   

17.
Computer simulations of biological electron transfer reactions are reviewed with a focus on the calculation of reaction free energy (driving force) and reorganization free energy. Then a mixed quantum mechanical/molecular mechanical (QM/MM) approach is described which is designed for computation of these quantities for pure electron transfer reactions with large donor-acceptor separation distances. The method is applied to intra-protein electron transfer in Ru(bpy)(2)(im)His33 cytochrome c and the results compared to experimental data. Several modeling aspects which are important for successful calculation of free energies with QM/MM are discussed in detail.  相似文献   

18.
19.
Papain-like cysteine proteases are ubiquitous proteolytic enzymes. The protonated His199/deprotonated Cys29 ion pair (cathepsin B numbering) in the active site is essential for their proper functioning. The presence of this ion pair stands in contrast to the corresponding intrinsic residue p K a values, indicating a strong influence of the enzyme environment. In the present work we show by molecular dynamics simulations on quantum mechanical/molecular mechanical (QM/MM) potentials that the ion pair is stabilized by a complex hydrogen bond network which comprises several amino acids situated in the active site of the enzyme and 2-4 water molecules. QM/MM reaction path computations for the proton transfer from His199 to the thiolate of the Cys29 moiety indicate that the ion pair is about 32-36 kJ mol (-1) more stable than the neutral form if the whole hydrogen bonding network is active. Without any hydrogen bonding network the ion pair is predicted to be significantly less stable than the neutral form. QM/MM charge deletion analysis and QM model calculations are used to quantify the stabilizing effect of the active-site residues and the L1 helix in favor of the zwitterionic form. The active-site water molecules contribute about 30 kJ mol (-1) to the overall stabilization. Disruption of the hydrogen bonding network upon substrate binding is expected to enhance the nucleophilic reactivity of the thiolate.  相似文献   

20.
IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号