首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jin Y  Luo G  Oka T  Manabe T 《Electrophoresis》2002,23(19):3385-3391
Synthetic UV-detectable peptide pI markers were used to estimate isoelectric point (pI) values of proteins separated by capillary isoelectric focusing (CIEF) followed by cathodic mobilization in the absence of denaturing agents. The pI calculation and quantitative analysis of purified proteins showed the feasibility of these peptides as pI markers and internal standards in CIEF separation of proteins. Estimation of pI values of major proteins in human plasma was performed using the peptide pI markers, and the values were compared with those previously obtained by gel isoelectric focusing (IEF). Sera of immunoglobulin G (IgG) myeloma patients, which showed characteristic peaks of myeloma IgG in their CIEF patterns, were also subjected to the analysis and the pI values of the myeloma proteins have been estimated.  相似文献   

2.
The use of low-molecular-mass color pI markers for the determination of pI values of proteins in gel isoelectric focusing (IEF) in combination with mass spectrometry is described. Different types of substituted phenols of known pI values within the mass range 250-400 were used here as pI markers. The pure, synthesized pI markers were studied by MALDI-TOF/TOF MS. Fragmentation studies of the pI markers were also performed. Only stable and well-characterized pI markers were used in this work. The selected pI markers were mixed with proteins, deposited on a gel and separated in a pH gradient. Color pI markers enable supervision of progress of the focusing process and also estimation of the position of the invisible focused bands. The separated bands of the pI markers (containing separated proteins) were excised, and the pI markers were eluted from each gel piece by water/ethanol and identified by MALDI-TOF/TOF MS. From the washed gel pieces the remaining carrier ampholytes were then washed out and proteins were in-gel digested with trypsin. The obtained peptides were measured by MALDI-TOF/TOF MS and the proteins identified via a protein database search. This procedure allows avoiding time-consuming protein staining and destaining procedures, which shortens the analysis time roughly by half. For comparison, IEF gels were stained with Coomassie Brilliant Blue R 250 and proteins in the gel bands were identified according to the standard proteomic protocol. This work has confirmed that our approach can give information about the correct pI values of particular proteins and shorten significantly the time of analysis.  相似文献   

3.
Low-molecular-mass fluorescent compounds excitable in the near UV region with suitable acidobasic and electrophoretic properties are suggested as isoelectric point (pI) markers for isoelectric focusing (IEF) with UV photometric and UV excited fluorometric detection. The experimental set-up of capillary IEF with UV excited fluorometric detection and properties of new UV-induced fluorescent pI markers are given. The pI values of 18 new pI markers determined independently of IEF methods range from 2.1 to 10.3. The examples of separation of new pI markers together with derivatized proteins by capillary IEF with photometric or fluorometric detection are presented.  相似文献   

4.
Huang X  Ren J 《Electrophoresis》2005,26(19):3595-3601
In this paper we present a sensitive chemiluminescence (CL) detection of heme proteins coupled with microchip IEF. The detection principle was based on the catalytic effects of the heme proteins on the CL reaction of luminol-H2O2 enhanced by para-iodophenol. The glass microchip and poly(dimethylsiloxane) (PDMS)/glass microchip for IEF were fabricated using micromachining technology in the laboratory. The modes of CL detection were investigated and two microchips (glass, PDMS/glass) were compared. Certain proteins, such as cytochrome c, myoglobin, and horseradish peroxidase, were focused by use of Pharmalyte pH 3-10 as ampholytes. Hydroxypropylmethylcellulose was added to the sample solution in order to easily reduce protein interactions with the channel wall as well as the EOF. The focused proteins were transported by salt mobilization to the CL detection window. Cytochrome c, myoglobin, and horseradish peroxidase were well separated within 10 min on a glass chip and the detection limits (S/N=3) were 1.2x10(-7), 1.6x10(-7), and 1.0x10(-10) M, respectively.  相似文献   

5.
Isoelectric focusing (IEF) of metallized and demetallized preparations of concanavalin A (Con A) consisting of either intact or fragmented subunits shows different band patterns. Metallized Con A consisting of intact polypeptide chains (intact Con A) has an isoelectric point (pI) 8.35. Metallized preparations consisting of fragmented chains (fragmented Con A) show three bands with pI values 8.0, 7.8 and 7.7. Demetallized intact Con A (intact apoCon A) has a pI of 6.5, however, it undergoes pH dependent association during IEF under certain conditions, which gives rise to multiple bands. Ampholyte-mediated demetallization of intact and fragmented Con A and subsequent aggregation of the apoprotein results in multiple bands during IEF in the presence of the pH range 3 to 10 ampholytes. However, ampholytes of the pH range 7 to 9 do not demetallize the proteins and show a single band with intact Con A. The pI of intact Con A remains essentially the same in the presence of inhibitory sugar. Furthermore, different moleculars forms of Con A, including locked and unlocked conformers of intact apoCon A, and the dimeric and tetramic states of both intact Con A and intact apoCon A have been identified and their pI values determined. IEF of the lentil isoelectins, LcH-A and LcH-B, shows single bands of pI 8.5 and 9.0, respectively. However, the native lectin mixture gives rise to an additional band of pI 8.8 due to a hybrid protein formed by ampholyte-mediated subunit exchange between the isolectins.  相似文献   

6.
Colored, low molecular weight pI markers have been developed for isoelectric focusing (IEF) in acidic pH range. Their isoelectric points (pIs) were determined by direct measurement of the pH of the focused bands after completion of IEF on polyacrylamide gels. The practicable suitability of the proposed pI markers as pI standards for IEF was tested by applying gel IEF. The acidic pH gradient was created either by commercial synthetic carrier ampholytes or by mixture of simple buffers consisting of acids (non-ampholytes) and ampholytic buffers. By applying simple acids, it was possible to extend the acidic pH range beyond those achievable with commercial synthetic carrier ampholytes. By using an experimental arrangement without electrode electrolyte reservoirs with electrodes creating the fixed end of the gel, the strongly acidic pH gradient was stable even for prolonged focusing time.  相似文献   

7.
Sixteen peptides (trimers to hexamers) were designed for use as a set of pI markers for capillary isoelectric focusing (CIEF). Each peptide contains one tryptophan residue for detection by UV absorption and other amino acid residues having ionic side chains, which are responsible for focusing to its pI. The pIs of these peptides were determined by slab-gel IEF using commercial carrier ampholytes. The focused peptides in the gel were detected by absorption measurement at 280 nm using a scanning densitometer and the pH gradient was determined by measuring the pH of the gel using an oxidized metal membrane electrode. The pI values of the peptides ranged from 3.38 to 10.17. The obtained values agreed well with the predicted ones, which were calculated based on amino acid compositions, with root mean square differences of 0.15 pH unit. The peptides were detected at 280 nm as very sharp peaks when separated by CIEF. The pI values of some standard proteins were redetermined by CIEF by using this set of peptide pI markers and the values agreed closely with those reported previously. The sharp focusing, stability, high purity and high solubility of these synthetic pI markers should facilitate the profiling of a pH gradient in a capillary and the determination of the pI values of proteins.  相似文献   

8.
Chmelík J  Mazanec K  Slais K 《Electrophoresis》2007,28(18):3315-3323
A new proteomic staining-free method for simultaneous identification of proteins and determination of their pI values by using low-molecular-mass pI markers is described. It is based on separation of proteins in gels by IEF in combination with mass spectrometric analysis of both peptides derived by in-gel digestion and low-molecular-mass pI markers extracted form the same piece excised from the gel. In this method, the pI markers are mixed with a protein mixture (a commercial malted barley protein extract) deposited on a gel and separated in a pH gradient. Color pI markers enable supervision of progress of focusing process. Several separated bands of the pI markers (including separated proteins) were excised and the pI markers were eluted from each gel piece by water/ethanol and identified by MALDI-TOF/TOF MS. The remaining carrier ampholytes were then washed out from gel pieces and proteins were in-gel digested with trypsin or chymotrypsin. Obtained peptides were measured by MALDI-TOF/TOF MS and proteins were identified via protein database search. This procedure allows omitting time-consuming protein staining and destaining procedures, which shortens the analysis time. For comparison, other IEF gels were stained with CBB R 250 and proteins in the gel bands were identified. Similarity of the results confirmed that our approach can give information about the correct pI values of particular proteins in complex samples at significantly shorter analysis times. This method can be very useful for identification of proteins and their post-translational modifications in prefractioned samples, where post-translational modifications (e.g., glycation) are frequent.  相似文献   

9.
Stastná M  Slais K 《Electrophoresis》2005,26(18):3586-3591
Two-dimensional gel isoelectric focusing (2-D gel IEF) is presented as the combination of the same separation method used consecutively in two directions of the same gel. In this new method, after completion of IEF process in the first dimension the gel was cut into the separate strips, each containing selected analytes together with the appropriate part of the original broad pH gradient, and the strips were rotated by 90 degrees (with regard to the first IEF) and left to diffuse overnight. After diffusion the strips were subjected to the second IEF. During the second IEF, the corresponding narrow part of pH gradient in each strip was restored again, however, now along the strip. The progress of the separation process can be monitored visually by using colored low-molecular-weight isoelectric point (pI) markers loaded into the gel simultaneously with proteins. The unique properties of IEF, focusing and resolution power were enhanced by using the same technique twice. Two forms of beta-lactoglobulin (pI values 5.14 and 5.31, respectively) non-separated in the first IEF were successfully separated in the second dimension at relatively low voltage (330 V) with the resolution power comparable to the high-resolution gels requiring the high voltage during the run and long separation time. Glucose oxidase loaded as diluted solution into ten positions across the gel was finally focused into a single band during 2-D gel IEF. Since the first and second IEF are carried out on the same gel, no losses and contamination of analyte occur. The suggested method can be used for separation/fractionation of complex biological mixtures, similarly as other multidimensional separation techniques applied in proteomics, and can be followed by further processing, e.g., mass spectrometry analysis. The focusing properties of IEF could be useful especially in separation of mixtures, where components are at low concentration levels.  相似文献   

10.
We studied the effects of fluorescent labeling on the isoelectric points (pI values) of proteins using capillary isoelectric focusing with laser-induced fluorescence detection (cIEF-LIF). Specifically, we labeled green fluorescent protein (GFP) from the jellyfish Aequorea victoria with the fluorogenic dye 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ). cIEF-LIF was used to monitor the native fluorescence of GFP and showed pI changes in GFP's FQ-labeled products. Multiple labeling of GFP with FQ produced a series of products with pI values shifted towards a low pH. We verified cIEF-LIF results with traditional slab gel IEF. Our cIEF-LIF technique can routinely detect 10(-11) M of FQ-labeled protein, whereas traditional slab gel IEF with silver stain detection gives detection limits of 10(-7) M in the same samples.  相似文献   

11.
Sample preparation is a crucial step for protein analysis. Functionalized magnetic nanoparticle (MNP)-based extraction has been developed to be a useful sample preparation technique for proteomic analysis. In this paper, we present a strategy for at-line coupling of MNP-based extraction (MNE) with gel isoelectric focusing (IEF). The key to the at-line combination is to use an anolyte or a catholyte as the desorbing agent. Thus, functionalized MNPs can be facilely at-line coupled with gel IEF, provided that the extraction/desorption process is pH-controlled. MNPs extracted with target proteins are added to the sample well, which can function as a natural adapter. Once a focusing electric field has been applied across the gel, proton ions migrating from the anolyte or hydroxide ions migrating from the catholyte can act as a desorbing agent, releasing the proteins from the MNE probes. The released proteins are consequently focused into distinct bands where the local pH equals their pI values. The at-line combination was well demonstrated with three types of functionalized nanoparticles: (1) phenylboronic acid functionalized MNPs for extracting glycoproteins through boronate affinity; (2) carboxyl-functionalized MNPs for extracting positively charged proteins through a weak cation exchange mechanism; and (3) amino-functionalized MNPs for extracting negatively charged proteins through a weak anion exchange mechanism. The at-line combination exhibited several significant advantages, including selectivity, sensitivity, and speed.  相似文献   

12.
Isoelectric focusing (IEF), traditionally accomplished in slab or tube gels, has also been performed extensively in capillary and, more recently, in microchip formats. IEF separations performed in microchips typically use electroosmotic flow (EOF) or chemical treatment to mobilize the focused zones past the detection point. This report describes the development and optimization of a microchip IEF method in a hybrid PDMS-glass device capable of controlling the mobilization of the focused zones past the detector using on-chip diaphragm pumping. The microchip design consisted of a glass fluid layer (separation channels), a PDMS layer and a glass valve layer (pressure connections and valve seats). Pressure mobilization was achieved on-chip using a diaphragm pump consisting of a series of reversible elastomeric valves, where a central diaphragm valve determined the volume of solution displaced while the gate valves on either side imparted directionality. The pumping rate could be adjusted to control the mobilization flow rate by varying the actuation times and pressure applied to the PDMS to actuate the valves. In order to compare the separation obtained using the chip with that obtained in a capillary, a serpentine channel design was used to match the separation length of the capillary, thereby evaluating the effect of diaphragm pumping itself on the overall separation quality. The optimized mIEF method was applied to the separation of labeled amino acids.  相似文献   

13.
Despite the large number of papers dealing with bacterial proteomes, very few include information about proteins with alkaline pI's, because of the limits inherent in 2-DE technology. Nonetheless, analyses of in silico proteomes of many prokaryotes show a bimodal distribution of their proteins based on their pI's; the most crowded areas lying between pI 4-7 and 9-11. The aim of the present research was to set up a general, simple, and standardizable 2-DE protocol suitable for studying the alkaline proteome of Lactobacillus hilgardii, a Gram-positive bacillus isolated from wine. The method has also been tested on a Gram-negative bacterium able to degrade aromatic pollutants, Acinetobacter radioresistens S13. Optimization of the method was mainly focused on improving protein extraction and IEF (pI 6-11) separation protocols. Concerning IEF, different methods for sample loading (in-gel rehydration and cup loading), and different reducing agents (DTT and bis(2-hydroxyethyl) disulfide (HED)) were tested and compared. The proposed protocol was found to resolve efficiently alkaline proteins from both of our Lactobacillus and Acinetobacter strains, in spite of their different external layers, thus, enabling a more comprehensive study of their proteomes.  相似文献   

14.
We describe a miniaturized instrument capable of performing 2-DE. Our miniaturized device is able to perform IEF and polyacrylamide slab gel electrophoresis (PASGE) in the same unit. It consists of a compartment for a first-dimensional IEF gel, which is connected to a second-dimensional PASGE gel. The focused samples are automatically transferred from the IEF gel to the PASGE gel by electromigration. Our preliminary experiments show that the device is able to focus and separate a mixture of proteins in approximately 1 h, excluding the time required for the staining procedure. On average, the gel-to-gel retardation factor (Rf) variation was 6.2% (+/-0.9%) and pI variation was 2.5% (+/-0.6%). Separated protein spots were excised from stained gels, digested with trypsin, and further identified by MS, thus enabling direct proteomic analysis of the separated proteins.  相似文献   

15.
Investigation of isoelectric focusing (IEF) kinetics has been performed to provide the theoretical basis for miniaturization of classical IEF in immobilized pH-gradients. Standard IEF demands colinearity of the electric field and pH-gradient directions (serial devices). It is shown that the IEF separation process based on a continuous, serial pH gradient is incompatible with miniaturization of separation devices. The new realization of the IEF device by a parallel IEF chip is suggested and analyzed. The main separation tool of the device is a dielectric membrane (chip) with conducting channels that are filled by Immobiline gels of varying pH. The membrane is held perpendicular to the applied electric field and proteins are collected (trapped) in the channels whose pH are equal to the pI of the proteins. The pH value of the surrounded aqueous solution is not equal to any channel's pH. The fast particle transport between different channels takes place due to convection in the aqueous solution. The new device geometry introduces two new spatial scales to be considered: the scale of transition region from a solution to the gel in a channel and a typical channel size. The corresponding time scales defining the IEF process kinetics are analyzed and scaling laws are obtained. It is shown both theoretically and experimentally that parallel IEF accelerates the fractionation of proteins by their pI down to several minutes and enables possible efficient sample collection and purification.  相似文献   

16.
The isoelectric focusing (IEF) properties of human alpha 2-macroglobulin (alpha 2M) and alpha 2M-proteinase complexes from crude and partially purified preparations were studied by column IEF. The average isoelectric point (pI) of the major form was 6.5 for alpha 2M from crude plasma but was 5.3 for purified samples. Following preincubation with either trypsin, chymotrypsin or pancreatic elastase the crude alpha 2M-proteinase complexes displayed pI values ranging from 5.3 to 6.1 and the purified alpha 2M-proteinase complexes ranged from pH 6.0 to 6.1. A comparison of recoveries for focused crude or purified alpha 2M and trypsin-preincubated alpha 2M indicated enhanced recovery for the trypsin-preincubated samples suggesting that the binding of the proteinase enhances the stability of alpha 2M. alpha 2M thus displays column IEF properties which appear to be dependent upon the state of purity of the molecule. These findings are of particular significance to investigators concerned with using expressions of altered alpha 2M electrophoretic patterns for clinical diagnostic purposes in such diseases as multiple sclerosis, diabetes and cystic fibrosis.  相似文献   

17.
Newly prepared azo compounds and several commercially available indicators were investigated for their applicability as colored isoelectric point (pI) markers for isoelectric focusing (IEF) in the acidic range below pH 5. The majority of compounds described here can serve as primary standards since their pI values were determined by UV-VIS spectrophotometry independently IEF and direct measurement with a pH electrode. Subjected to gel IEF they show narrow and well-observable zones of different colors. Finally, our work resulted in suggestion of a color ladder composed of pI markers covering the pH range from 1.5 to 4.7.  相似文献   

18.
Plastic microchips are very promising analytical devices for the high-speed analysis of biological compounds. However, due to its hydrophobicity, their surface strongly interacts with nonpolar analytes or species containing hydrophobic domains, resulting in a significant uncontrolled adsorption on the channel walls. This paper describes the migration of fluorescence-labeled amino acids and proteins using the poly(methyl methacrylate) microchip. A cationic starch derivative significantly decreases the adsorption of analytes on the channel walls. The migration time of the analytes was related to their molecular weight and net charge or pI of the analytes. FITC-BSA migrated within 2 min, and the theoretical plate number of the peak reached 480,000 plates/m. Furthermore, proteins with a wide range of pI values and molecular weights migrated within 1 min using the microchip.  相似文献   

19.
An isoelectric point (pI) calibration kit containing fish muscle parvalbumins was prepared and tested for its suitability for isoelectric focusing (IEF) in the presence of 8 M urea. The pattern obtained by urea CleanGel IEF consisted of nine bands covering the pI range 4.96-5.64. This range is relevant for species identification of heated fish by urea IEF. The kit may also be used for native IEF in the low pH range, as demonstrated by running an extract made from the kit together with water-soluble fish muscle proteins on Servalyt Precotes 3-6.  相似文献   

20.
The master two-dimensional gel database of human keratinocytes currently lists 2980 cellular proteins (2098 isoelectric focusing, IEF; and 882 nonequilibrium pH gradient electrophoresis, NEPHGE) many of which correspond to posttranslational modifications. About 20% of all recorded proteins have been identified (protein name, organelle components, etc.) and they are listed in alphabetical order together with their M(r), pI, cellular localization and credit to the investigator(s) that aided in the identification. Also, we have listed 145 microsequenced proteins that are recorded in this database. As an aid in localizing the polypeptides we have included blow-ups of the master images (IEF, NEPHGE) displaying all the protein numbers. In the long run, the master keratinocyte database is expected to link protein and DNA sequencing and mapping information (Human Genome Program) and to provide an integrated picture of the expression levels and properties of the thousands of proteins that orchestrate various keratinocyte functions both in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号