首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
Structural and electrical properties of HfO2 gate-dielectric metal-oxide-semiconductor (MOS) capacitors deposited by sputtering are investigated. The HfO2 high-k thin films have been deposited on p-type <100> silicon wafer using RF-Magnetron sputtering technique. The Ellipsometric, FTIR and AFM characterizations have been done. The thickness of the as deposited film is measured to be 35.38 nm. Post deposition annealing in N2 ambient is carried out at 350, 550, 750 °C. The chemical bonding and surface morphology of the film is verified using FTIR and AFM respectively. The structural characterization confirmed that the thin film was free of physical defects and root mean square surface roughness decreased as the annealing temperature increased. The smooth surface HfO2 thin films were used for Al/HfO2/p-Si MOS structures fabrication. The fabricated Al/HfO2/p-Si structure had been used for extracting electrical properties such as dielectric constant, EOT, interface trap density and leakage current density through capacitance voltage and current voltage measurements. The interface state density extracted from the GV measurement using Hill Coleman method. Sample annealed at 750 °C showed the lowest interface trap density (3.48 × 1011 eV−1 cm−2), effective oxide charge (1.33 × 1012 cm−2) and low leakage current density (3.39 × 10−9 A cm−2) at 1.5 V.  相似文献   

2.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

3.
In this study, a protective Ni–Co alloy coating was prepared on sintered NdFeB magnet applying electrodeposition technique. A pure nickel coating was also studied for a comparison. The microstructure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. The corrosion protection properties of coatings for NdFeB magnet in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure and surface morphologies analysis showed that the addition of cobalt element into matrix metal Ni altered the preferential orientation of pure nickel coating from (2 0 0) crystal face for pure nickel coating to (1 1 1) crystal face for Ni–Co alloy coating, and made the surface morphologies more compact and uniform due to the grain-refining. The results of potentiodynamic polarization test showed that compared with pure nickel coating, Ni–Co alloy coating exhibited much nobler corrosion potential (E corr) and lower corrosion current density (j corr), indicating better anticorrosive properties. The long-term immersion test by dint of EIS indicated that the Ni–Co alloy coating still presented high impedance value of 1.9 × 105 Ω cm2 with the immersion time of 576 h indicating the excellent anticorrosive properties, and corrosion protection properties of nickel coating for NdFeB magnet practically disappeared with the immersion time of 144 h, which also indicated that the Ni–Co alloy coating provided better corrosion protection properties for the NdFeB magnet compared with nickel coating.  相似文献   

4.

Hexagonal boron nitride (h-BN) was neutron damaged at an integral flux of 2.40 × 1012 n cm−2 s−1 for 1, 2, 3 and 4 h. The h-BN samples undergo a transition from sp2 to sp3 hybridization as a consequence of the neutron induced damage with the formation of cubic boron nitride (c-BN) spots, as suggested both by FT–IR and Raman spectroscopy. In addition to c-BN, also a certain degree of amorphization is achieved by h-BN already at the lowest neutron fluence of 8.64 × 1015 n cm−2 as clearly evidenced by Raman spectroscopy. The Wigner or stored energy to the radiation-damaged h-BN samples was studied by DSC and also in this case there was a clear evidence that the neutron damage was partly irreversible and insensitive to the thermal annealing up to 630 °C. Electron spin resonance (ESR) was employed to further study the structural defects induced by the neutron bombardment of h-BN. Two kinds of paramagnetic defective structures centered on 11B atoms were identified.

  相似文献   

5.
The infrared spectra of ethylmethylfluorosilane (CH3SiHFCH2CH3) have been recorded as a vapour, liquid and solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of two different solid phases were obtained after annealing to temperatures of 120 and 130 K, and recooling to 78 K. Although the IR spectra were quite similar in the MIR region, certain differences were noted in the FIR region below 400 cm−1. The most stable conformer MeMe was present after annealing to 130 K, but three bands belonging to MeH were detected after annealing to 120 K. Various infrared bands changed intensity when the argon matrix was annealed to temperatures between 20 and 35 K, and some of these were related to changes in the conformational abundance.Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, various bands changed in intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer MeMe. From various bands assigned to the three conformers, the conformational enthalpy difference ΔH from MeMe to the intermediate energy conformer MeH was found to be 0.5 kJ mol−1 and to the highest conformer MeF was 0.7 kJ mol−1. At ambient temperature this leads to 39% MeMe, 32% MeH and 29% of the MeF conformer in the liquid.Ab initio calculations in the RHF, MP2, DFT approximations and very accurate G2 calculations were carried out. With one exception, the MeMe conformer had the lowest enthalpy in all these calculations, the MeH had the intermediate and the MeF the highest enthalpy, and the calculations were in good agreement with the measurements.  相似文献   

6.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

7.
Complex multicomponent, multispin molecular system, consisting of a septet trinitrene, two quintet dinitrenes, and three triplet mononitrenes, was obtained by the photolysis of 2,4,6-triazido-3-cyano-5-fluoropyridine in solid argon. To identify these paramagnetic products, electron paramagnetic resonance spectroscopy in combination with line-shape spectral simulations and density functional theory calculations was used. The products of the photolysis was found to be triplet 2,4-diazido-3-cyano-5-fluoropyridyl-6-nitrene (DT = 1.000 cm−1, ET = 0), triplet 2,4-diazido-3-cyano-5-fluoropyridyl-2-nitrene (DT = 1.043 cm−1, ET = 0), triplet 2,6-diazido-3-cyano-5-fluoropyridyl-4-nitrene (DT = 1.128 cm−1, ET = 0 cm−1), quintet 4-azido-3-cyano-5-fluoropyridyl-2,6-dinitrene (DQ = 0.211 cm−1, EQ = 0.0532 cm−1), quintet 2-azido-3-cyano-5-fluoropyridyl-4,6-dinitrene (DQ = 0.208 cm−1, EQ = 0.0386 cm−1), and septet 3-cyano-5-fluoropyridyl-2,4,6-trinitrene (DS = −0.1017 cm−1, ES = −0.0042 cm−1) in a 38:4:7:22:14:4 ratio, respectively.  相似文献   

8.
The effect of a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), on the crystallization behavior of poly(lactic acid) (PLA) was probed by time-resolved Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). The vibrational changes associated with inter- and intra-chain interactions during crystallization were monitored. In the initial period of crystallization, the order of intensity changes is as follows: 1458 cm−1 > 1210 cm−1 » 921 cm−1, 1458 cm−1 ∼ 1210 cm−1 > 921 cm−1, and 1458 cm−1 ∼ 1210 cm−1 ∼ 921 cm−1 for neat PLA, PLAs containing 0.1 wt% and 0.3 wt% BTCA, respectively. This indicates that BTCA can accelerate both the formation of skeletal conformational-ordered structure and, especially, the 103 helix one. The incorporation of BTCA changes the crystallization mechanism but has no impact on the crystal form of PLA.  相似文献   

9.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

10.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

11.
《Solid State Sciences》2012,14(6):735-738
Thin films of GaN with thickness of 2 μm were synthesized on sapphire. Cr+ ions were implanted into GaN with150 keV energy at a fluence of 3 × 1015 cm−2. The annealing of the samples was carried out for a short time using rapid thermal annealing (RTA). Structural properties of the implanted samples were undertaken by XRD and Rutherford backscattering. The annealed samples demonstrated lattice recovery and damages caused by implantation. The structural properties were also studied by High-resolution X-ray Diffraction (HRXRD). Magnetic measurements of the samples were performed by Alternating Gradient Magnetometer (AGM) at room temperature and by SQUID in the range of 5–380 K. The SQUID results showed ferromagnetic behavior at T = 5 K and above 380 K for Cr+-implanted GaN.  相似文献   

12.
The rate constants of the reactions of DO2 + HO2 (R1) and DO2 + DO2 (R2) have been determined by the simultaneous, selective, and quantitative measurement of HO2 and DO2 by continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near infrared, coupled to a radical generation by laser photolysis. HO2 was generated by photolyzing Cl2 in the presence of CH3OH and O2. Low concentrations of DO2 were generated simultaneously by adding low concentrations of D2O to the reaction mixture, leading through isotopic exchange on tubing and reactor walls to formation of low concentrations of CH3OD and thus formation of DO2. Excess DO2 was generated by photolyzing Cl2 in the presence of CD3OD and O2, small concentrations of HO2 were always generated simultaneously by isotopic exchange between CD3OD and residual H2O. The rate constant k1 at 295 K was found to be pressure independent in the range 25–200 Torr helium, but increased with increasing D2O concentration k1 = (1.67 ± 0.03) × 10−12 × (1 + (8.2 ± 1.6) × 10−18 cm× [D2O] cm−3) cm3 s−1. The rate constant for the DO2 self-reaction k2 has been measured under excess DO2 concentration, and the DO2 concentration has been determined by fitting the HO2 decays, now governed by their reaction with DO2, to the rate constant k1. A rate constant with insignificant pressure dependence was found: k2 = (4.1 ± 0.6) × 10−13 (1 + (2 ± 2) × 10−20 cm× [He] cm−3) cm3 s−1 as well as an increase of k2 with increasing D2O concentration was observed: k2 = (4.14 ± 0.02) × 10−13 × (1 + (6.5 ± 1.3) × 10−18 cm3 × [D2O] cm−3) cm3 s−1. The result for k2 is in excellent agreement with literature values, whereas this is the first determination of k1.  相似文献   

13.
A poly (3,6-bis(thiophen-2-yl)−2,5-bis(2-decyltetradecyl)−2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.016 and 0.004 cm2 V−1 s−1, respectively. However, after thermal annealing at 240 °C, the OFETs exhibit improved transport characteristics with highly balanced ambipolar transport, showing average hole and electron mobility values of 0.065 and 0.116 cm2 V−1 s−1, respectively. To verify the application of the PDPADPP OFETs in high-voltage logic circuits, compact modeling using the industry-standard small-signal Berkeley short-channel IGFET model (BSIM) is performed, and the logic application characteristics are evaluated. The circuit simulation results demonstrate excellent logic application performance of the PDPADPP-based ambipolar transistor and illustrate that the device annealed at 240 °C exhibits ideal circuit characteristics.  相似文献   

14.
LiCo0.9M0.1PO4 (M = Co2+, Mg2+, Ca2+)/graphitic carbon composites are synthesized by Pechini-assisted sol–gel process and annealed by the 2-steps annealing process (300 °C for 5 min in air, then at 730 °C for 12 h in nitrogen). The structural investigation, performed on powders, reveals the presence of LiCoPO4 as the major crystalline phase and of CoP2O7 (M = Co), of Co2P (M = Mg), of Co2P, Li3PO4, (Ca,Co)3(PO4)2 (M = Ca) as impurities. The morphological investigation of the composites shows the formation of crystalline “islands-like” structures with acicular crystallites with different dimensions (typically 5–50 μm) on the top of them. The voltammetric analysis shows a very good reversibility of the (de)intercalation processes and the presence of two mean peak maxima in the cathodic region at ∼5.01 V and ∼5.05 V respectively. The discharge specific capacities, at a discharge rate of C/10 and room temperature, were 100 mAh g−1 for M = Co, 68 mAh g−1 for M = Mg and 104 mAh g−1 for M = Ca respectively. The electrochemical impedance spectroscopy data reveal a decrease of the electrical resistance and the improvement of the Li-ion conductivity in the Ca and Mg ions containing composites.  相似文献   

15.
Choline dihydrogen phosphate ([N1.1.1.2OH]DHP) and 1-butyl-3-methylimidazolium dihydrogen phosphate ([C4mim]DHP) were synthesized as a new class of proton-conducting ionic plastic crystals. Both [N1.1.1.2OH]DHP and [C4mim]DHP showed solid–solid phase transition(s) and showed a final entropy of fusion lower than 20 J K−1 mol−1 which is consistent with Timmerman’s criterion for molecular plastic crystals. The ionic conductivity of [N1.1.1.2OH]DHP was in the range of 10−6 S cm−1–10−3 S cm−1 in the plastic crystalline phase. On the other hand, the ionic conductivity of [C4mim]DHP showed about 10−5 S cm−1 in the plastic crystalline phase. [N1.1.1.2OH]DHP showed one order of magnitude higher ionic conductivity than [C4mim]DHP in the temperature range where the plastic phase is stable.  相似文献   

16.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

17.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

18.
Application of near-infrared (NIR) spectroscopy to probing the arrangement of trimethylalkylammonium cations in montmorillonite interlayers has been demonstrated. Detailed analysis of the mid-IR (MIR) and NIR spectra of montmorillonite from Jelšový Potok (JP, Slovakia) saturated with surfactants with varying alkyl chain length (even numbers of carbon atoms from C6 to C18) was performed to show the advantages of the NIR region in characterizing surfactant conformations. The position of the νas(CH2), (∼2930–2920 cm−1), νs(CH2) (∼2860–2850 cm−1), 2νas(CH2) (∼5810–5785 cm−1), (ν + δ)as(CH2) (∼4340–4330 cm−1) and (ν + δ)s(CH2) (∼4270–4250 cm−1) signals was used as an indicator of the gauche/trans conformer ratio. For all bands, a shift toward lower wavenumber on increasing the alkyl chain length from 6 to 18 carbons suggests a transition from disordered liquid-like to more ordered solid-like structures of the surfactants. The magnitude of the shift was significantly higher for 2νas(CH2) (28 cm−1) than for νas(CH2) (8 cm−1) or νs(CH2) (10 cm−1), showing the NIR region to be a useful tool for examining this issue. Comparison of the IR spectra of crystalline alkylammonium salts and the corresponding organo-montmorillonites demonstrated a confining effect of montmorillonite layers on surfactant ordering. For each alkyl chain length the CH2 bands of the organo-montmorillonites appeared at higher wavenumbers than for the unconfined surfactant, thus indicating a higher disorder of the alkyl chains. The wavenumber difference between corresponding samples was always higher in the NIR than in the MIR region. All these findings show NIR spectroscopy to be useful for conformational studies.  相似文献   

19.
20.
Herein, FeS2@TiO2 nanotubes photocatalyst was prepared by electrochemical anodization method followed by successive ionic layer adsorption and reaction method, and then finally annealed in a tube furnace for homogenous crystallization. The surface morphology, elemental composition, optical properties, and crystalline structure of the prepared FeS2@TiO2 nanocomposite were found out by performing scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, and fluorescence spectroscopy, respectively, while bonds vibrations and various functional groups' presence were analyzed using Raman and Fourier transform infrared spectroscopy. A higher photocurrent density of 1.59 mA/cm2 at 0.3 V versus reference electrode of Ag/AgCl (1.23 V versus reversible hydrogen electrode) using 100 mW/cm2 intensive light source was shown by 15-FeS2@TiO2 nanotubes (uniformly loaded photoanode) while donor density (ND) of 3.68 × 10−13 cm−3 as compared to pure TiO2 NTs (0.09 mA/cm2), 05-FeS2@TiO2 NTs (0.19 mA/cm2), 10-FeS2@TiO2 NTs (0.53 mA/cm2) and 20-FeS2@TiO2 NTs (0.61 mA/cm2), respectively. The exceptional photoelectrochemical activity results were attributed to the homogenous integration of FeS2 that not only increase the charge separation but also, intensively interacted with the substrate (TiO2 nanotubes), which results in an excellent photoelectrochemical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号