首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diethylcarbamazine citrate (DEC) is the main drug used in the lymphatic filariasis treatment. This study aimed to evaluate drug-excipient compatibility of binary mixtures (BMs) (1:1, w/w), initially by differential scanning calorimetry (DSC), and subsequently, if there were any interaction evidence, by complementary techniques, such as thermogravimetric (TG), non-isothermal kinetics, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). For the analyses of the BMs by DSC, we selected those with Tabletose®, representing the excipients containing lactose, polivinilpirrolidona (PVP), and magnesium stearate (MgS). The additional analyses by FT-IR and XRD showed no interaction evidence. The TG curves of DEC–Tabletose® showed no signs of interaction, unlike the TG curves of PVP and MgS, confirming the results of non-isothermal kinetics, in which the BMs with PVP and MgS decreased the reaction activation energy. Thus, it was concluded after evaluation that the excipients, especially the PVP and MgS, should be avoided.  相似文献   

2.
The ornidazole drug substance presents melt at approximately 90 °C (∆T = 85–98 °C), which is critical for its use on pharmaceutical manufacturing process. This work aimed the thermal characterization of ornidazole raw-material synthesized by three different manufacturers from India, China, and Italy, using the thermoanalytical techniques of DTA, DSC, and TG, besides the verification of its stability and compatibility as a solid pharmaceutical product by the analysis of its binary mixtures (BM) with excipients and a tablet formulation. The characterization includes the thermal decomposition kinetic investigation by Ozawa model using Arrhenius equation and drug purity determination by Van’t Hoff equation. The DSC purity determination and precision were compared with results from UV–Vis spectrophotometric and liquid chromatography, showing an adequate correlation before being recommended as a general method for purity assay. The drug raw-materials presented similar quality and zero-order kinetic behavior, besides showing differences on thermal stability. The drug presented compatibility with the tested excipients since the BM studied presented melting at the same temperature range as the drug and a decomposition temperature similar to the drug for two of the BM, and at a higher temperature for the others three of the BM evaluated, which presented excipients with higher molecular structure, capable of spatial coating on the small drug molecule promoting a physical interaction pharmaceutical acceptable. The tablet was processed by wet granulation and compressed under normal conditions of pressure and temperature, maintaining the physical properties of solid drug approving the manufacturing process used. In this study, the thermal analysis was used with success as an alternative method to characterize, quantify, and perform a preformulation study.  相似文献   

3.
Primaquine (PQ) is the drug of choice for the radical cure of Plasmodium vivax malaria, and currently being administered in solid dosage form. In this study, the compatibility studies were carried out using differential scanning calorimetry (DSC), thermogravimetry (TG), and fourier transformed infrared (FT-IR). Non-isothermal and isothermal methods were employed to investigate kinetic parameters under nitrogen and air atmospheres using TG. The DSC investigations obtained by physical mixtures showed slight alterations in the melting temperatures of PQ with some excipients. The FT-IR confirmed the possible interactions obtained by DSC for the physical mixtures with PQ and lactose, magnesium stearate and mannitol. The results showed that the thermal decomposition followed a zero order kinetic in both atmospheres in non-isothermal method. The activation energy in both methods using nitrogen atmosphere was similar, and in air atmosphere the activation energy decreased.  相似文献   

4.
Experiments were done to assess the compatibility of nateglinide (NTG) with selected excipients in the development of immediate release tablets of NTG by thermal and isothermal stress testing (IST) techniques. To evaluate the drug excipient compatibility, different techniques such as differential scanning calorimetric (DSC) study, infrared (IR) spectrophotometric study, and IST were adopted. The results of DSC study showed that magnesium stearate exhibited some interaction with NTG. However, the results of IR and IST studies showed that all the excipients used in the formula were compatible with NTG. The optimized formulation developed using the compatible excipients were found to be stable after 3 months of accelerated stability studies (40 ± 2 °C and 75 ± 5% RH). Overall, compatibility of excipients with NTG was successfully evaluated using the combination of thermal and IST methods and the formulations developed using the compatible excipients was found to be stable.  相似文献   

5.
Risperidone (RSP) is an atypical antipsychotic drug used in treating schizophrenia, behavioral, and psychological symptoms of dementia and irritability associated with autism. The drug substance is practically insoluble in water and exhibits high lipophilicity. It also presents incompatibilities with pharmaceutical excipients such as magnesium stearate, lactose, and cellulose microcrystalline. RSP encapsulation by randomly methylated β-cyclodextrin (RM-β-CD) was performed in order to enhance drug solubility and stability and improve its biopharmaceutical profile. The inclusion complex formation was evaluated using thermal methods, powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier transform infrared (UATR-FTIR), UV spectroscopy, and saturation solubility studies. The 1:1 stoichiometry ratio and the apparent stability constant of the inclusion complex were determined by means of the phase solubility method. The compatibility between the supramolecular adduct and pharmaceutical excipients starch, anhydrous lactose, magnesium stearate, and cellulose microcrystalline was studied employing thermoanalytical tools (TG-thermogravimetry/DTG-derivative thermogravimetry/HF-heat flow) and spectroscopic techniques (UATR-FTIR, PXRD). The compatibility study reveals that there are no interactions between the supramolecular adduct with starch, magnesium stearate, and cellulose microcrystalline, while incompatibility with anhydrous lactose is observed even under ambient conditions. The supramolecular adduct of RSP with RM-β-CD represents a valuable candidate for further research in developing new formulations with enhanced bioavailability and stability, and the results of this study allow a pertinent selection of three excipients that can be incorporated in solid dosage forms.  相似文献   

6.
The evaluation of sildenafil citrate (SC), the best-selling drug for treatment of impotence, for compatibility with various excipients was investigated using thermal and isothermal stress testing. Differential scanning calorimetry (DSC), hot-stage microscopy (HSM) and liquid chromatography (LC) with ultraviolet detection were successfully employed to investigate the compatibility between SC and various excipients commonly used in solid form in the pharmaceutical industry. The studies were performed using 1:1 (m/m) drug/excipient physical mixtures and samples were stored under accelerated stability conditions (40 °C at 75% relative humidity). All excipients tested (such as colloidal silicon dioxide, croscarmellose sodium, lactose, mannitol and sucrose) showed potential incompatibilities by DSC and LC analysis after accelerated stability testing. However, some incompatibilities were not detected by the DSC method and were observed only when LC analysis was performed. HSM was able to differentiate active pharmaceutical ingredient degradation from solubilisation, supporting the interpretation of DSC in excipients where thermal events either overlapped or disappeared. The combination of both the analytical techniques (DSC and LC) and use of a stability chamber is extremely helpful in detecting incompatibilities and providing more robust and accurate approaches for pre-formulation studies.  相似文献   

7.
This study demonstrates the thermalanalysis applications in compatibility and stability studies of the propranolol binary mixture sand tablets A and B. The propranolol binary mixtures were prepared in the laboratory and compared to the fully formulated tablets using the thermogravimetric (TG) and calorimetric(DSC) methods. DSC of binary mixtures showed similar phase transition to propranolol drug. The tablets phase transition decreased and there was no detectable significant interaction in propranolol–lactose mixture and tablets. The DSC-photovisual test revealed an interaction similar to the Maillard reaction. The TG isothermal study showed a difference in the profile between the drug and tablets due excipients quality and problems in manufacture process. The kinetic parameters indicated a lower stability for the tablets than propranolol drug. The thermal techniques thermally differentiated the propranolol preparations demonstrating the importance in the design development of pharmaceuticals solid-dosage form. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.

This paper deals with the study of compatibility between antihyperlipidemic agent atorvastatin calcium trihydrate (ATV) and eight pharmaceutical excipients used in the development of solid dosage forms, namely citric acid, anhydrous lactose, magnesium citrate, magnesium carbonate, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, colloidal silica and sorbitol. As investigational tools, universal attenuated total reflectance Fourier transform infrared spectroscopy and powder X-ray diffractogram patterns were used for binary mixtures of ATV with each excipient at ambient condition and then completed by subjecting the samples to thermal stress using thermal analysis (TG/DTG/HF), in non-isothermal conditions and in oxidative medium. It was shown the binary mixtures do not present interactions between ATV and excipients when stored under ambient conditions for 2 months, while under thermal stress, ATV presents interactions with sorbitol.

  相似文献   

9.
During preformulation studies of pharmaceutical solid dosage forms, thermal analysis techniques are very useful to detect physical or chemical incompatibilities between the drug and adjuvants of interest that might interfere with efficacy and safety of the final drug product. Differential scanning calorimetry (DSC) and thermogravimetry (TG) are useful tools for this purpose. The aim of this study was to investigate the thermoanalytical behavior of olanzapine (OLZ) when mixed with several excipients commonly used in solid dosage forms such as microcrystalline cellulose, croscarmellose, dicalcium phosphate dihydrate (DCPD), lactose, magnesium stearate, and povidone. Following DSC and TG analyses, powder X-ray diffraction tests were carried out. Thermoanalytical methods showed evidence of interaction between OLZ and magnesium stearate, lactose, and povidone. These results can be useful during the selection of excipients for pharmaceutical formulation development.  相似文献   

10.
The purpose of this study was to investigate the polymorphism and compatibility of benznidazole (BNZ), a drug used in the treatment of Chagas disease. This drug was subjected to a polymorphic screen using a number of solvents and precipitation procedures to explore the possible existence of different crystal structures of BNZ. The compatibility of BNZ with selected pharmaceutical excipients was evaluated in binary mixtures, in a ratio of 1:1 (w/w). These results were then analyzed with a variety of techniques, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray powder diffractometry. No polymorphic forms of BNZ were detected despite some observed changes in the DSC profile. The thermal data indicate interaction of the drug with excipients hydroxyethylcellulose, polyethylene glycol, and hydroxypropyl-β-cyclodextrin. Additional studies using infrared spectroscopy confirm the incompatibility of BNZ with only the polyethylene glycol. This excipient should not be used in the development of solid dosage forms containing BNZ.  相似文献   

11.
Thermal analysis is a routine method for analysis of drugs and substances of pharmaceutical interest. Thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) are thermoanalytical methods which offer important information about the physical and chemical properties of drugs (purity, stability, phase transition, polymorphism, compatibility, kinetic analysis, etc.). This work exemplifies a general method of studying the drug-excipient interactions with the aim of predicting rapidly and inexpensively the long thermal stability of their mixtures. The TG/DTG and DSC were used as screening techniques for assessing the compatibility between indomethacin (IND) and its physical associations as binary mixtures with some common excipients. Based on their frequent use in preformulations eleven different excipients: corn starch, microcrystalline cellulose (PH 101; PH 102), colloidal silicon dioxide, lactose (monohydrate and anhydre), polyvinilpyrrolidone K30, magnesium stearate, talc, stearic acid, and manitol were blended with IND. The samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). In order to investigate the possible interactions between the components, the thermal curves of IND and each selected excipient were compared with those of their 1:1 (w/w) physical mixtures. FT-IR spectroscopy and X-ray powder diffraction were used as complementary techniques to adequately implement and assist in interpretation of thermal results. On the basis of thermal results, confirmed by FT-IR and X-ray analyses, a possible interaction was found between IND with polyvinylpyrrolidone K30, magnesium stearate, and stearic acid.  相似文献   

12.
The present study describes compatibility of anti-HIV drug lamivudine with various selected excipients and a novel synthesized polymer, for the development of its controlled release formulation. Differential scanning calorimetry (DSC), isothermal stability study (ISS) and Fourier transform infrared (FT-IR) spectral analysis were performed to access the compatibility. The compatibility study was performed with various common excipients like spray dried lactose, polyvinyl pyrrolidine K-30, magnesium stearate, talc and a novel synthesized polymer cross-linked sago starch with lamivudine.  相似文献   

13.
Thermal analysis is an essential analytical tool in development of new formulations as well as to study the interaction between drugs and excipients. This work aims to investigate the possible interactions between metformin and excipients as microcrystalline cellulose (Microcel MC101®), starch sodium glycolate (Explosol®), sodium croscarmellose (Explosel®), PVP K30, magnesium stearate, starch and lactose, usually employed in pharmaceutical products. TG, DSC and DTA techniques were used for the thermal characterization to track if the thermal properties of the drug substance were modified in the mixture. Disregard of the starch and lactose systems, no changes in thermal behavior of mixtures were found. Thermogravimetric studies (TG) of metformin and its binary mixtures showed different thermal behavior.  相似文献   

14.
For the development of dispersible tablets of itraconazole (ITR), techniques of thermal, Raman spectroscopy, and isothermal stress testing (IST) were used to assess the compatibility of ITR with selected excipients. Initially, differential scanning calorimeter (DSC) was used to evaluate the compatibility. Raman spectrum of drug–excipient mixture was also compared with that of pure drug and excipient. Compatibility of excipients defined in the prototype formula was tested using IST. Based on the DSC results alone, PEG-4000 was found to exhibit interaction with ITR. However, the results of Raman and IST studies showed that all the excipients used in the formula were compatible with ITR. Overall, compatibility of excipients with ITR was successfully evaluated using the combination of DSC, Raman spectroscopy, and IST techniques.  相似文献   

15.

Alogliptin (ALG) is a hypoglycemic drug used in diabetes which inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), preventing the degradation of incretins, stimulating insulin secretion. The physicochemical characteristics of ALG were evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (SEM/EDS). The compatibility studies were carried out between ALG and excipients (physical mixtures, 1:1) using DSC, TG, diffuse reflectance Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and hot-stage microscopy. ALG presented purity near to 99%, melted in the range of 179.4–187.2 °C, followed by decomposition which started in 198.0 °C. SEM/EMS analysis of ALG presented irregular crystals and traces of impurities as copper and lead. DSC investigations obtained by physical mixtures showed minor alterations in the melting ranges of ALG with mannitol, magnesium stearate and commercial tablets. Solubilization of ALG in the fused excipient was observed by hot-stage microscopy between mannitol and ALG, and in tablets. The interaction observed in the mixture with magnesium stearate is due to the melting of the excipient and drug separately, first the excipient and then the drug. FTIR showed additional bands related to the excipients. XRPD proved that ALG has a crystal form and no alterations in the ALG profile were observed after the mixtures. ALG was compatible with all excipients tested. These results were important to understand the characteristics, stability and compatibility of the drug, and proved to be useful in preformulation studies.

  相似文献   

16.
The drug-excipient compatibility study of quetiapine fumarate, with widely used sustained release excipients, was carried out employing differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The selected excipients were HPMC K100M, sodium alginate, xanthan gum, Eudragit RSPO, hydrogenated castor oil, carnauba wax, and PEO WSR 303. Equal proportion of drug and excipients was utilized in the interaction study. FT-IR spectra indicated the absence of interaction between drug and excipients. The DSC curve showed a sharp endothermic melting peak at 173.26 °C for quetiapine fumarate. Post melting interaction was observed for carnauba wax, Eudragit RSPO, and hydrogenated castor oil probably due to solubilization of drug in the melted excipient. No interaction was observed for other excipients. The physical mixtures stored at 30 ± 2 °C/65 ± 5% RH did not show any significant degradation of the drug. The concept of systemically conducted preformulation studies will facilitate dossier submission to the drug control authority.  相似文献   

17.
The thermal techniques of analysis were used to assess the compatibility between ibuprofen (IB) and some excipients used in the development of extended released formulations. This study is a part of a systematic study undertaken to find and optimizes a general method of detecting the drug–excipient interactions, with the aim of predicting rapidly and assuring the long-term stability of pharmaceutical product and speeding up its marketing. The thermal properties of IB and its physical association as binary mixtures with some common excipients were evaluated by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry. FT-IR spectroscopy and X-ray powder diffraction (XRPD) were used as complementary techniques to adequately implement and assist in interpretation of the thermal results. Based on their frequent use in preformulations nine different excipients: starch; microcrystalline cellulose (PH 101 and PH 102); colloidal silicon dioxide; lactose (monohydrate and anhydre); polyvinylpyrrolidone; magnesium stearate and talc were blended with IB. The samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). The TG/DSC curves of the IB have shown a single stage of mass loss between 175 and 290 °C, respectively, an endothermic peak at 78.5 °C, which corresponds to the melting (literature T m = 75–78 °C).  相似文献   

18.
Isothermal microcalorimetry was used to evaluate excipient compatibility of solid dosage form. Oxybutynin hydrochloride and cefaclor were used as model drugs for compatibility test with excipients. The calorimetric data for compatibility test were compared with those of HPLC data. Evaluation of compatibility between drug and excipient of solid dosage form might be possible to use isothermal microcalorimetry instead of conventional method. By using microcalorimetric method, the evaluation of the compatibility between drug and excipient could be successfully performed with a simple operation in a short time. The application of the isothermal microcalorimetry would be useful for the screening test of the drug compatibility with excipients.  相似文献   

19.
Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, and hot-stage microscopy were employed to evaluate the drug–excipient compatibility of atovaquone with commonly used tablet excipients. The DSC curves of pure drug and excipients were compared with their physical mixtures. Microcrystalline cellulose, titanium dioxide, colloidal silica, ferric oxide, lactose monohydrate, and sodium starch glycolate were compatible, while magnesium stearate, polyethylene glycol (PEG) 8000, Poloxamer 188, and hydroxypropyl methyl cellulose (HPMC) E15 showed incompatibility with the drug. Heat–cool–heat analysis of the physical and the ground mixture of later three excipients showed polymorphic transformation of atovaquone form III to form I, which occurred via amorphization with HPMC E15 and through solubilization mechanism with remaining two excipients. These outcomes were further supported by hot-stage microscopy. Results of milling experiments revealed a milling time-dependent polymorphic transformation and solubilization with HPMC E15 and PEG 8000, respectively. This study highlights the importance of compatibility assessment for selection of excipients in specific unit operations such as milling and grinding.  相似文献   

20.
In the present work, the thermal decomposition of sibutramine hydrochloride monohydrate (SBT) (an appetite suppressant agent) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). Solid-state characterization was carried out by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Isothermal and non-isothermal methods were employed to determine the kinetic data of decomposition process. From isothermal experiments, activation energy (Ea) can be obtained from slope of ln t versus 1/T, and the value obtained was 96.06 and 101.43 kJ mol−1 in N2 and air atmospheres, respectively. For non-isothermal method Ea can be obtained from plot of logarithms of heating rates, as a function of inverse of temperature, resulting in a value of 96.56 and 98.22 kJ mol−1 in N2 and air atmospheres, respectively. The compatibilities of several commonly used pharmaceutical excipients (microcrystalline cellulose, magnesium stearate, colloidal silicon dioxide, lactose monohydrate) and empty hard-gelatin capsules with SBT were evaluated using DSC. The 1:1 physical mixtures of these excipients with SBT showed physical interaction of the drug with magnesium stearate. On the other hand, DRIFT results did not evidence any chemical modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号