首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Alternate adsorption of positively charged colloid-Au nanoparticles (nano-Au⊕) and negatively charged hemoglobin (Hb) on L-cysteine (L-cys) modified gold electrode resulted in the assembly of {Hb/nano-Au⊕}n layer-by-layer films/L-cys modified gold electrode. The nano-Au⊕ was characterized by transmission electron micrograph (TEM) and microelectrophoresis. The modified electrode interface morphology was characterized by electrochemical impedance spectroscopy (EIS), atomic force mi- croscopy (AFM), cyclic voltammograms (CV) and chronoamperometry. Direct electron transfer between hemoglobin and gold electrodes was studied, and the apparent Michaelis-Menten constant ( km app) of the modified electrode was evaluated to be 0.10 mmol·L?1. Moreover, the higher activity of proteins in the nano-Au⊕ films could be retained compared with the electropolymerization membrane, since the pro- teins in nano-Au⊕ films retained their near-native structure. Direct electron transfer between hemoglo- bin and electrode and electrochemically catalyzed reduction of hydrogen peroxide on a modified elec- trode was studied, and the linear range was from 2.1×10-8 to 1.2 ×10?3 mol·L-1 (r = 0.994) with a detection limit of 1.1×10-8 mol·L-1 H2O2.  相似文献   

2.
A liposome‐encapsulated human hemoglobin (Neo Red Cell, (NRC) has been developed and evaluated as an artificial oxygen carrier. The NRC is a liposome‐encapsulated highly concentrated (>45%) stroma‐free human hemoglobin with inositol hexaphosphate (IHP as an allosteric effector), a coenzyme and substrates for reducing methemoglobin (metHb). The NRC's surface was coated with polyethylene glycol to prevent aggregation in plasma and to prolong their retention time in the blood stream. The oxygen binding behavior of the NRC in vitro was investigated and it was found that it effectively transports oxygen in vivo as an oxygen carrier. The oxygen binding behavior and kinetics were studied by the stopped‐flow method and the oxygen binding curve of the NRC was determined. The oxygen binding speed and binding coefficient (Kon) of NRC, washed human red blood cells (WRBC) and stroma‐free human hemoglobin (SFHb) were measured by stopped‐flow method. The oxygen binding speed of SFHb was the highest, while that of RBC was the lowest and that of NRC was intermediate. The oxygen binding of NRC ended within 60 msec when deoxy‐NRC was mixed with oxygen. The Kon of NRC was 2.9 × 105, 10 times faster than that of RBC. The oxygen binding curve and P50O2 of NRC that contained various IHP concentrations were measured. The oxygen‐binding curve of the NRC sequentially shifted to the right as the IHP content was increased. Exchange transfusion of 70% was carried out for rats with NRC containing various concentrations of IHP and of Hb, and investigated the optimum concentration of NRC in vivo. The lactate value after exchange transfusion was three times higher than before exchange transfusion, when rats were subjected to exchange transfused with NRC that did not contain IHP. But the increase of lactate was suppressed when rats were transfused with NRC that contained IHP. When the Hb concentration of NRC was 5 and 6%, exchange transfused rats recovered to normality just like rats transfused with RBC. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The direct electrochemistry of hemoglobin (Hb) incorporated in methacrylic acid (MAA) film on a paraffin-impregnated graphite electrode (PIGE) was described. A pair of well-defined and quasi-reversible cyclic voltametric peaks are obtained. The formal potentials (E 0′) linearly depend on the pH of solution, indicating that the electron transfer was proton-coupled. Ultraviolet-visible (UV-Vis) spectra showed that the secondary structure of Hb in the MAA film was similar to individual Hb. The immobilized Hb retained its biological activity well and exhibited a nice response to the reduction of both NO2, and H2O2, on the basis of which a new biosensor has been developed. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 9, pp. 1079–1086. The text was submitted by the authors in English.  相似文献   

4.
The reaction of hemoglobin (Hb), oxyhemoglobin (HbO2), and methemoglobin (metHb) with the tetranitrosyl iron complex of the fu2-S type [Fe2(SC4H3N2)2(NO)4] (1) was studied. The reaction results in the nitrosylation of the free SH group of 93-β-cysteine in these forms of hemoglobin. The change in the Hb, HbO2, and metHb concentrations was monitored by spectrophotometry, recording the difference absorption spectra of the experimental systems with these forms of hemoglobin and the buffer containing complex 1 in the same concentration. The absorption spectra were processed to obtain the components using the MATHCAD method. The nitrosothiol concentration was determined by the Saville reaction. In a protic medium containing 3.3% DMSO, complex 1 spontaneously generates NO due to hydrolysis (k = 3.7 · 10-4 s-1). Oxyhemoglobin reacts with evolved NO to form metHb. Complex 1 reduces metHb with a high rate to yield Hb (k = 6.7 · 10-3 s-1) followed by the formation of HbNO (k = 6.5 · 10-3 s-1). Oxidized complex 1 yields NO with a higher rate than the starting complex does. The reaction of HbO2 and metHb (0.02 mmo1 L-1) with complex 1 affords nitrosothiols in micromolar concentration during 5 min, and no nitrosothiol is formed in the case of Hb.  相似文献   

5.
Artificial red cells with crosslinked hemoglobin membranes   总被引:1,自引:0,他引:1  
Artificial cells containing concentrated hemoglobin (Hb) solution were prepared by interfacial polymerization of Hb with glutaraldehyde (GA) in liquid membrane capsules (LMC). A solution containing 30% of Hb was emulsified in mineral oil as red cell-size microdroplets, and this emulsion was dispersed in an aqueous phase containing glutaraldehyde to form LMC. The LMC were semipermeable templates that held the microdroplets of Hb in suspension while GA diffused through the oil to the microdroplet surfaces. The GA crosslinked Hb at the surface of each microdroplet to form an artificial red-cell membrane encapsulating Hb solution. A water-soluble surfactant was used to eject the cells from the LMC and suspend them in saline. Several surfactants were evaluated. Cell size was controlled by agitation speed during preparation of the original emulsion. Cells of 2.52 = ±1.69 μm were prepared. The encapsulated Hb retained capacity to bind and release O2. The cells had aP 50 of 8.9 torr (1200 Pa) and a capacity of 0.55 cc O2/g of total Hb, indicating that the crosslinked portion of the Hb did not contribute to O2 transport.  相似文献   

6.
Direct electrochemistry of hemoglobin (Hb) immobilized on the dihexadecyl hydrogen phosphate (DHP)/single-wall carbon nanotubes (SWNTs) film modified Au electrode is investigated. The immobilized Hb displays a couple of stable and well-defined redox peaks, whose formal potential (E 0) is −0.434 V (SCE) in a phosphate buffer solution of pH 7.0. The formal potential of the heme Fe(III)/Fe(II) couple shifts negatively linearly with increased pH with a slope of −42.3 mV/pH, denoting that one electron transfer accompanies single proton transportation. Both SWNTs and DHP can accelerate the electron transfer between Hb and the electrode. Using DHP/Hb/SWNTs-film-modified Au electrode, the interaction between Hb and taxol is investigated. The voltammetric response of Hb decreases with increasing concentration of taxol. The peak currents decreases proportionally to the taxol concentration at 1.4 × 10−5 to 1.3 × 10−4 M, the linear regression equation being Δi (A) = 2.9603 − 0.4225 ctaxol (M), with a correlation coefficient (r) 0.9985, and the detection limit 6.95 × 10−6 M (signal-to-noise ratio of three). Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 801–807. The text was submitted by the authors in English.  相似文献   

7.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

8.
The tetranitrosyl iron complex with pyridine-2-yl [Fe2(SC5H4N)2(NO)4] (1) has higher NO-donating activity in 3% aqueous solutions of DMSO (pH 7.0, 25 °C) than the organic NO donor, viz., adduct of NO with diethylenetriamine (NO-adduct). The NO concentration was determined by the spectrophotometric method based on the formation of an NO complex with hemoglobin (Hb). The apparent first-order rate constants of the studied reactions are (6.15±0.6)·10−1 s−1 and (0.8±0.08)·10−1 s−1 for complex 1 and the NO-adduct, respectively, at an Hb concentration of 2·10−1 mol L−1 and the ratio [NO donor]/[Hb] = 10. The effect of Hb and [NO donor]/[Hb] ratio on the rate of NO generation from a solution of complex 1 was studied. For a fourfold decrease in the concentration of complex 1 the reaction rate constant decreases to 0.5·10−4 s−1, whereas the fourfold increase in the Hb concentration results in the stabilization of complex 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 732–736, April, 2007.  相似文献   

9.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

10.
Isoelectric focusing (IEF) of glycated hemoglobin (GHb) was carried out in ultra-thin polyacrylamide gels to separate the hemoglobin-advanced glycation endproducts (Hb-AGEs) from the hemoglobin-A1C (HbA1C) fraction. Precast polyacrylamide gels (Ampholine® PAGplate) were used in Pharmacia LKB Multiphor II for this purpose. The separated bands for Hb-AGE and HbA1C based on their isoelectric point (pI), were confirmed with the purifed fractions obtained from the cation exchange chromatographic technique. From the calibration curve, the pI values were found to be 6.748 and 6.495 for HbA1C and Hb-AGE, respectively. The lowering of pI values for glycated hemoglobin, when compared to unglycated hemoglobin (pI = 6.852), can be attributed to the glycation at the amino terminals of the peptide chains. Increased reduction in pI value for Hb-AGE can be attributed to the effect of glycation of amino groups at various sites on the peptide chains, apart from the terminal amino groups. Fluorescence analysis was carried out for the purified fraction of Hb-AGE which showed the formation of a new fluorophor adduct having the excitation and emission maxima at 308 nm and 345 nm, respectively. Time-dependent formation of Hb-AGE under in vitro conditions was monitored by fluorescence (308/345 nm) over a period of 120 days, which showed its formation only after 3 weeks of incubation.  相似文献   

11.
《Analytical letters》2012,45(2):125-138
Abstract

Much of the data on hemoglobin-gas interactions which have accumulated in the literature is difficult to interpret because the hemoglobin preparations contained extraneous ligands and salts. In order to obtain hemoglobin which is completely free of 2, 3-DPG and other ionic substances, we have developed a method for isolating isoionic hemoglobin. These data serve as a baseline against which other data obtained with added ligands and salts can be compared.

Specifically, isoionic hemoglobin had these properties: Second-order rate constant for combination with 02: 2.2 × 107 M?1S?1; p50 at 20[ddot] was 0.87mm Hg at heme concentration of 10?4 M.  相似文献   

12.
TiO2-graphene nanocomposite was prepared by hydrolysis of titanium isopropoxide in colloidal suspension of graphene oxide and in situ hydrothermal treatment. The direct electrochemistry and electrocatalysis of hemoglobin in room temperature ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate, chitosan and TiO2-graphene nanocomposite modified glassy carbon electrode were investigated. The biosensor was examined by using UV-vis spectroscopy, scanning electron microscopy and electrochemical methods. The results indicated that hemoglobin remained its bioactivity on the modified electrode, showing a couple of well-defined and quasi-reversible redox peaks, corresponding to hemoglobin FeIII/FeII couple. The kinetic parameters for the electrode reaction, such as the formal potential (Eo'), the electron transfer rate constant (ks), the apparent coverage (Γ), and Michaelis–Menten constant (Km) were evaluated. The biosensor showed good electrochemical responses to the reduction of H2O2 in the ranges of 1–1170 μM. The detection limit was 0.3 μM (S/N = 3). The properties of this composite film, together with the bioelectrochemical catalytic activity, could make them useful in the development of bioelectronic devices, and investigation of electrochemistry of other heme proteins at functional interface.  相似文献   

13.
W. Li  D. Zhang  B. Lin  Z. Su 《Chromatographia》2000,52(7-8):451-454
Summary Bovine hemoglobin (Hb) has been chemically modified, by reaction of its lysine residues with the active ester of poly(ethylene glycol) (PEG,M w=5000), to produce a potential blood substitute for human therapy. Covalent attachment of PEG chain to the protein produced a heterogeneous mixture of Hb from the mixture. This paper describes the use of cation-exchange chromatography (IEC), in flow-through mode, and size-exclusion chromatography (SEC) for purification of the PEG-Hb mixture. The highly modified Hb flowed through the IEC column in the loading buffer without adsorption by the chromatographic medium. SEC was then used for further purification. These two steps were suitable for pilot-scale preparation or for analytical chromatography. The purified product was assessed by high-performance capillary electrophoresis (HPCE), which was also used to optimize the chromatographic parameters.  相似文献   

14.
Viscous properties of partially hemolyzed erythrocyte suspensions were studied with a cone-plate viscometer. A Casson plot was successfully applied for analysis of the viscous properties. When the degree of hemolysis was increased, Casson viscosity ( c) of the partially hemolyzed erythrocyte suspensions increased, but the substitution of hemoglobin solution with the same O2-carrying capacity of hemolyzed fraction (containing ghost) reduced the c remarkably. The yield stress (f c) of the intact erythrocyte suspension increased with increasing hematocrit, but thef c of partially hemolyzed erythrocyte suspension was dependent on both hematocrit and the degree of hemolysis. The apparent viscosity ( a) of erythrocyte suspension was drastically increased with the slight hemolysis, and became maximum at a certain degree of hemolysis which was dependent on both total hemoglobin concentration and shear rate. Such influence of hemolysis on the a was also evident in the mixture of erythrocyte suspension and hemoglobin solution. These results suggest that the hemoglobin molecule plays a certain role in erythrocyte-erythrocyte interaction in their suspension, which modifies the viscosity.  相似文献   

15.
Research on biomarkers for protein oxidation might give insight into the mechanistic mode of oxidative stress. In the work present here, a novel pipeline was established to probe the oxidation mechanism of bovine hemoglobin (Hb) with its oxidation products serving as the biomarkers. Reactive oxygen species generated by irradiation were used to mimic oxidative stress conditions to oxidize Hb in bovine erythrocytes. After Hb extraction and digestion, oxidized peptides in the tryptic fragments were assigned by comparison with the extracted ion chromatography spectra of native peptide from the control sample. Subsequent tandem mass spectrometry analysis of these peptides proved that oxidation was limited to partially exposed amino acid residues (α‐Phe36, β‐Met1, β‐Trp14, for instance) in Hb. Quantitation analysis on these oxidized peptides showed that oxidation degrees of target sites had positive correlations with the extended oxidation dose and the oxidation processes were also controlled by residues types. Compared with the conventional protein carbonyl assay, the identified oxidized products were feasibility biomarkers for Hb oxidation, indicating that the proposed biomarker pipeline was suitable to provide specific and valid information for protein oxidation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The efficacy of photodynamic therapy is typically reliant on the local concentration and diffusion of oxygen. Due to the hypoxic microenvironment found in solid tumors, oxygen-independent photosensitizers are in great demand for cancer therapy. We herein report an iridium(III) anthraquinone complex as a mitochondrion-localized carbon-radical initiator. Its emission is turned on under hypoxic conditions after reduction by reductase. Furthermore, its two-photon excitation properties (λex=730 nm) are highly desirable for imaging. Upon irradiation, the reduced form of the complex generates carbon radicals, leading to a loss of mitochondrial membrane potential and cell death (IC50light=2.1 μm , IC50dark=58.2 μm , PI=27.7). The efficacy of the complex as a PDT agent was also demonstrated under hypoxic conditions in vivo. To the best of our knowledge, it is the first metal-complex-based theranostic agent which can generate carbon radicals for oxygen-independent two-photon photodynamic therapy.  相似文献   

17.
Abstract

The title compounds, representative of classes of diorganotin (IV) derivatives active against murine leukemia P-388. interact with rat hemoglobin (selected as a model protein) by: i) co-crystallization. with formation of microcrystalline pellets, and: ii) diffusion into hemoglobin crystals from the supernatant solution (as determined for the 2-mercaptoethanesulfonato derivative). The nature of the Me2SnIV species in hemoglobin has been investigated by 119Sn Mössbauer spectroscopy, and a C2SnS2 tetrahedral geometry has been assigned by the point-charge model rationalization of the nuclear quadrupole splitting parameter.

Binding into crystalline hemoglobin has been ascribed to Coulomb interactions and to hydrogen bonding between the sulfonate and the aminoacid tails of the organotin (IV) derivatives and functional groups of the globin.  相似文献   

18.
A room temperature ionic liquid (IL) 1‐butyl‐3‐methylimidazolium hexafluorophosphate functionalized graphene (GE) was prepared and a hydrogen peroxide (H2O2) biosensor was fabricated by immobilizing hemoglobin (Hb) into the IL‐GE composite film. UV‐visible and Fourier transform infrared spectra of the composite film indicated that Hb retained its native structure in the film. Electrochemical investigation of the biosensor showed a pair of well‐defined, quasi‐reversible redox peaks with Epa=?0.209 V and Epc= ?0.302 V (vs. SCE) in pH 7.0 phosphate buffer solution at the scan rate of 100 mV/s. To the reduction of H2O2, the biosensor had a good linear range from 8.0×10?7 to 1.8×10?4 mol/L with a detection limit of 3.0×10?7 mol/L. The apparent Michaelis‐Menten constant KappM was estimated to be 3.4×10?5 mol/L.  相似文献   

19.
Hemoglobin (Hb) reduces 3,3-bis(nitroxymethyl)oxetane (NMO) only in the presence of cysteine (Cys) via intermediate cysteine thionitrate. The kinetics of the reaction of NMO with Cys and the kinetics and mechanism of formation of NO in the ternary system Hb-NMO-Cys were studied. The formation rate of Hb-NO in the ternary system is higher than that of Hb-NO in the reaction of Hb only with NO 2 generated in the binary system NMO-Cys. The second-order rate constants of the main reaction steps in the system Hb-NMO-Cys were estimated by simulating the kinetics of the reactions with a system of equations taking into account equilibria between all components of the reaction mixture. Hemoglobin reduces cysteine thionitrate, the intermediate in the reaction of NMO with Cys, to NO. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 725–731, April, 2007.  相似文献   

20.
2-Vinyl anthraquinone has been polymerized, via radiation-induced initiation, in dimethyl-sulphoxide and in dichloromethane. Solvent to monomer ratios of 1 : 0.030 to 1 : 0.0167 mol have been examined for dose rates in the range 0.035 to 0.129 Gy s?1 and exposure times in the range 1.44 × 104 to 4.32 × 106 s. Rates of polymerization were found to lie in the range from 2.4 × 10?8 to 1.92 × 10?6 mol L?1 s?1. Values for the chain transfer constant to dimethyl-sulphoxide and to dichloromethane have been calculated. In addition, values of the kinetic ratio k/kt, for the polymerization of 2-vinyl anthraquinone have been estimated. The dependence of Rp on the monomer concentration and on the radiation intensity have been shown to be in broad agreement with a simplified steady-state kinetic scheme. A value of G(radical) for 2-vinyl anthraquinone was obtained via electron spin resonance studies, and shown to be 0.24. This G(radical) value and those obtained indirectly from kinetic data are discussed in relation to the molar mass values obtained from the poly(2-vinyl anthraquinone) products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号