首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
采用激光干涉方法对水下声辐射激励水表面声波的特征参数频率和振幅进行了测量研究。从理论上对水表面声波激光相干测量信号的频谱构成进行了分析,在此基础上提出了水表面声波两个重要声学参数频率和振幅的解算方法,并通过数值仿真进行了验证。搭建了一套简单的激光干涉测量实验系统,对不同频率和声压激励的水表面声波进行了测量实验,验证了水表面声波频率和振幅解调方法的准确性。对水表面声波横向传播的振幅衰减现象进行了初步的实验研究,结果表明水表面声波的频率越高,振幅的横向衰减越快。研究表明激光相干检测方法能够准确地实现水表面声波振幅和频率的测量。   相似文献   

2.
Two opposite gravity-capillary waves of equal frequency give rise to the formation of a standing wave on the ocean surface and, thus, in the nonlinear approximation, generate a sound wave of twofold frequency with an amplitude proportional to the squared height of the surface wave [1]. This effect, being caused by the nonlinear interaction of opposite surface waves, can give rise to the radiation of sound waves in both ocean and atmosphere [2]. Opposite waves can appear in the ocean as a result of different ocean-atmosphere interactions and, in particular, as a result of the blocking of capillary waves on the slope of a gravity wave.  相似文献   

3.
A popular method for generating micron-sized aerosols is to submerge ultrasonic (ω~MHz) piezoelectric oscillators in a water bath. The submerged oscillator atomizes the fluid, creating droplets with radii proportional to the wavelength of the standing wave at the fluid surface. Classical theory for the Faraday instability predicts a parametric instability driving a capillary wave at the subharmonic (ω/2) frequency. For many applications it is desirable to reduce the size of the droplets; however, using higher frequency oscillators becomes impractical beyond a few MHz. Observations are presented that demonstrate that smaller droplets may also be created by increasing the driving amplitude of the oscillator, and that this effect becomes more pronounced for large driving frequencies. It is shown that these observations are consistent with a transition from droplets associated with subharmonic (ω/2) capillary waves to harmonic (ω) capillary waves induced by larger driving frequencies and amplitudes, as predicted by a stability analysis of the capillary waves.  相似文献   

4.
We report the observation of two types of Sommerfeld precursors (or forerunners) on the surface of a layer of mercury. When the fluid depth increases, we observe a transition between these two precursor surface waves in good agreement with the predictions of asymptotic analysis. At depths thin enough compared to the capillary length, high frequency precursors propagate ahead of the "main signal" and their period and amplitude, measured at a fixed point, increase in time. For larger depths, low frequency "precursors" follow the main signal with a decreasing period and amplitude. These behaviors are understood in the framework of the analysis first introduced for linear transient electromagnetic waves in a dielectric medium by Sommerfeld [Ann. Phys. (Leipzig) 44, 177 (1914)]] and Brillouin [Ann. Phys. (Leipzig) 44, 203 (1914)]].  相似文献   

5.
Underwater acoustic channels are band-limited and reverberant, posing many obstacles to reliable, phase-coherent acoustic communications. While many high frequency communication experiments have been conducted in shallow water, few have carried out systematic studies on the channel properties at a time scale relevant for communications. To aid communication system design, this paper analyzes at-sea data collected in shallow water under various conditions to illustrate how the ocean environments (sea surface waves and random ocean medium) can affect the signal properties. Channel properties studied include amplitude and phase variations, and temporal coherence of individual paths as well as the temporal and spatial coherence of multipaths at different time scales. Reasons for the coherence loss are hypothesized.  相似文献   

6.
Theoretical and experimental results on thermocapillary hydrodynamic surface waves induced in liquids by travelling spatially periodical distribution of light intensity are reported. The phase of local elevation in capillary waves is close to the phase of interference pattern when frequency is far from zero and from eigen frequency of free capillary waves. This phase difference is exactly π/2 for zero frequency.  相似文献   

7.
邓明晰 《应用声学》2013,32(4):263-270
在基频与二倍频兰姆波相速度匹配但群速度失配的条件下, 通过选择适当的兰姆波二次谐波时域信号的测量起止时间, 可完全扣除换能器对二次谐波积分振幅测量所带来的影响。本文提出采用兰姆波二次谐波的积分振幅作为评价参量, 以实现对板材表面性质的准确评价。当板材表面性质发生改变时, 原本在理想表面条件下成立的基频与二倍频兰姆波相速度匹配的条件不再严格满足, 这将显著地影响到兰姆波的二次谐波发生效率, 相应的二次谐波积分振幅随表面性质的改变也将发生非常敏感的单调变化。实验结果表明,利用扣除换能器影响之后所测得的兰姆波二次谐波的积分振幅,可对板材表面性质的变化情况进行准确评价。  相似文献   

8.
The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip–surface electromagnetic near-field interaction plays a significant role.  相似文献   

9.
The dynamics of establishing steady-state turbulent cascade has been studied in a system of capillary waves on the surface of liquid hydrogen after additional pumping whose frequency is lower than the frequency of the main pumping is switched off/on. It has been found that, when the additional low-frequency pumping is switched on, the amplitude of waves in the high-frequency part of the turbulent spectrum decreases, which gives rise to the narrowing of the inertial frequency range. The experimental data qualitatively agree with the numerical calculations performed in the kinetic-equation approximation including the viscous damping of waves.  相似文献   

10.
Analytic waves     
Physical aspects of wave theory are discussed. Analytic waves (AW) neatly define the amplitude and frequency of real running waves and generalize and justify some points of wave theory. It is shown that the local group delay averaged in frequency defines the velocity of a wave center at each point. An asymptotic solution is developed for running spectra in slowly varying media. Also, Whitham's method is generalized not only for the frequency but also the amplitude of a wave. The theory is applied to quantum mechanics, and the paradox of tunneling is clarified. This paradox is not specifically quantum but occurs and can be explained in a classical area.  相似文献   

11.
In this paper we construct small amplitude periodic internal waves traveling at the boundary region between two rotational and homogeneous fluids with different densities. Within a period, the waves we obtain have the property that the gradient of the stream function associated to the fluid beneath the interface vanishes, on the wave surface, at exactly two points. Furthermore, there exists a critical layer which is bounded from above by the wave profile. Besides, we prove, without excluding the presence of stagnation points, that if the vorticity function associated to each fluid in part is real-analytic, bounded, and non-increasing, then capillary-gravity steady internal waves are a priori real-analytic. Our new method provides the real-analyticity of capillary and capillary-gravity waves with stagnation points traveling over a homogeneous rotational fluid under the same restrictions on the vorticity function.  相似文献   

12.
菅永军  鄂学全  张杰  孟俊敏 《中国物理》2004,13(10):1623-1630
The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency.  相似文献   

13.
Estimates are presented for the fluctuations of the parameters of low-frequency sound fields in shallow-water regions of the Barents Sea, in the presence of seasonal internal gravity waves. The objective of the experiments is to reveal the main mechanisms that govern the sound fluctuations and their statistical parameters on paths of moderate lengths (50–60 to 100–120 km). Another objective is to determine the features of the sound interaction with internal waves for the sound speed profile of the summer—autumn type for which the water stratification is most pronounced. As the probing signals, continuous tonal ones produced by bottommoored sources at the frequencies about 100 and 300 Hz are used along with the 1/3-octave noise signals with the central frequency 1000 Hz, which are generated by a source deployed from a vessel. For the signal reception, both fixed bottom-moored hydrophones and a vertical chain of hydrophones are used, the chain also being deployed from the vessel. The water temperature, the salinity, and the thermocline displacements are monitored with standard hydrographic sensors. The following main results are presented: the estimate of the degree of correlation between the sound fluctuations and the parameters of the water layer, the comparison of the fluctuations in the signal amplitude envelope with the data obtained in other regions, and the estimate of the statistical parameters of the signal amplitude fluctuations, including their dependence on the path length. One more result consists in the proof of the wave nature of the interaction of sound and internal waves, which manifests itself in a strong dependence of the sound interaction with internal waves of discrete frequencies on the frequency of the probing signal and on the angle at which these wave beams intersect. An attempt is made to explain the observed phenomena by the synchronism in the interacting sound and gravity waves. The data obtained can be used to analyze and compare the fluctuations of the sound fields in the ocean, especially in shallow-water regions.  相似文献   

14.
蒋川东  王琦  杜官峰  易晓峰  田宝凤 《物理学报》2018,67(1):13302-013302
地面核磁共振(surface nuclear magnetic resonance,SNMR)方法在地下水探测领域具有直接、定量和解释唯一等优势,但是由于地磁场存在不均匀、随时间变化和易受噪声影响等难以确定的问题,导致偏共振激发,严重影响反演结果的准确性.本文基于地面核磁偏共振(surface nuclear magnetic off-resonance,SNMOR)模型和相应的核函数表达式,讨论了频率偏量对偏共振信号的影响,并提出了基于系统相位自动搜索和信号实部与虚部同时参与的复包络反演方法.通过仿真模型和反演结果对比得到:偏共振信号相位随频率的增加而增大,仿真模型中的信号幅度最大提高了65.9%;当频率偏量大于2 Hz时,利用SNMOR核函数的反演结果的准确度明显优于SNMR核函数的结果;当噪声较大时,复包络方法充分利用测量数据的有用信息,比常规幅度反演具有更高的稳定性和可靠性.最后,通过野外实测数据和反演结果,验证了本文提出的SNMOR模型和复包络反演方法的有效性和准确性,为地下水探测领域提供了新的技术手段.  相似文献   

15.
王松岭  刘梅  王思思  吴正人 《物理学报》2015,64(1):14701-014701
本文对非平整壁面上的液膜表面波演化过程进行了研究. 针对非平整壁面随时间变化的特性, 采用小参数摄动法对控制方程和边界条件进行求解, 推导出波动壁面上液膜表面波的扰动方程, 采用导数展开法对其进行求解, 并选取简谐波形状的壁面进行数值研究. 对波动壁面下不同参数的影响规律研究可得, 当壁面频率较小时, 静态波与行进波的波长比较相近, 促进表面波之间的合并, 且壁面频率、壁面振幅及Re数的增加, 均会使表面波的振幅明显增大; 对比波动壁面与非平整壁面可得, 在相同位置处, 随着时间的演化, 非平整壁面上表面波呈周期变化, 而波动壁面上表面波呈波长更大的近周期变化; 壁面振幅和壁面频率的降低, 均会使两种壁面结构下的表面波振幅减小, 但所形成的表面波形有所不同, 即波动壁面引起的表面波可看作波动壁面结构与非平整壁面引起的表面波叠加而成.  相似文献   

16.
A combination and modification of two existing methods, which involves balancing static and dynamic pressure differences between points along the surface and conserving mass through cross sections below the surface in the reference frame moving with the phase velocity, is applied to surface gravity waves of arbitrary amplitude in water of finite depth. For a given still water depth and wave height the method determines in closed form the phase velocity, wavelength, and wave profile of the stable wave. The main assumption is that the horizontal component of the fluid velocity be independent of depth. The motion is not assumed to be irrotational. The wavelength of the stable wave is found to be about 3.6 times the still water depth for infinitesimal amplitude, and at finite amplitude the wavelength decreases as the amplitude increases. Therefore, shallow water waves are concluded to be unstable even at infinitesimal amplitude, for which the assumption is accurate. Previously it has been argued that only at finite amplitude will shallow water waves change form as they propagate. The wave profile is found to be sinusoidal for infinitesimal amplitude and to be asymmetric at finite amplitude, the crests being higher and narrower and the troughs shallower and broader. These results are consistent with well-known theoretical work and laboratory measurements.  相似文献   

17.
Laser detection methods allow the investigation of ultrasonic transient phenomena in both space and time dimensions. Used for the experimental investigation of surface wave propagation along a 2D surface, laser ultrasonic leads to three dimensional (3D) space-time signal collections. The classical high resolution signal processing methods or 3D Fourier Transforms can be used in order to extract the wave propagation information, however these methods are not adapted for identifying where and when the waves are generated. In order to quantify these transient aspects in the space-time-wave number-frequency domains, the 3D Gabor transform is introduced. The 3D Gabor transform properties are presented. The potential of the 3D Gabor for the identification of the local and transient complex wave numbers is illustrated on the propagation of surface waves on a piezoelectric quartz (AT cut, 6 MHz). In this experimental study, the quartz is excited by a voltage pulse and the quartz surface is scanned by a laser vibrometer. The 3D Gabor analysis shows that the circular electrodes borders generate anti-phase surface waves that propagates outside the electrodes, with a strong energy contribution in the low frequency domain (<1 MHz). The transient analysis also points out, for higher frequencies, where the surface waves are generated and how they propagate with respect of both to the geometry of the electrodes and the crystallographic axis of the quartz. These results confirm the theoretical modal analysis and provide new knowledge about the key role played by the electrodes border. This will allow the optimization of the electrodes shape in order to design low frequency Lamb wave sensors.  相似文献   

18.
Decay of the turbulence of capillary waves on the surface of a real liquid is studied in the presence of the viscous damping of the waves at all frequencies after stepwise removal of external pumping. The investigation is performed using two different models: the weak turbulence approximation and the local turbulence model in which the energy redistribution over frequencies is described by the polynomial expression in the wave-occupation number. It is shown that the decay of turbulence in the viscous liquid proceeds self-similarly and begins at high frequencies. In the decay process, the frequency distribution of the energy of waves is close to the stationary form E ω ~ ω?3/2 in a wide frequency range below the boundary frequency of the inertial range during a relatively long time after removal of the external force. The calculation results agree qualitatively with the results of the experiments on capillary turbulence on the charged surface of liquid hydrogen.  相似文献   

19.
In electronics, it is well known that filtering devices can be made that are able to decompose a signal instantaneously into a number of real frequency components. This procedure is equivalent to a numerical real time Fourier transform. However, it is also known that an electronic signal can be decomposed not just in real frequency components, but also in complex frequency components. The current paper shows that it is theoretically possible to create a device, made of a periodically rough surface and a system that transforms the electronic signal into acoustic waves, that can be used to measure the amplitude attributed to considered complex frequency components of an electronic signal, in real time. This 'thought device' is mainly based on the directivity of diffracted sound and the complex frequency dependence of this directivity.  相似文献   

20.
In the domain of capillary waves, a bicubic dispersion relation is derived and analyzed for surface and internal capillary–gravitational waves in a three-layer liquid with a free surface. It is shown that the ratio of the internal wave amplitudes to the surface wave amplitudes is fairly large if the trivial condition of a “homogeneous liquid” is discarded. The amplitude ratio between the internal waves themselves (generated at different interfaces) may be both greater and smaller than unity depending on the physical parameters of the system. Specifically, it strongly depends on the densities of the layers and their thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号