首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

2.
The electrocatalytic Pt-Mo system was obtained by formation of platinum particles on the Mo surface under its contact with PtC62− (PtCl42−) under the open circuit conditions. Cyclic voltammograms of the obtained Pt(Mo) electrodes feature well pronounced peaks of hydrogen adsorption and desorption on Pt particles. Nonuniform platinum distribution across the electrode surface was found. Pt(Mo) electrodes showed a higher specific activity in the reaction of methanol oxidation in the potential range of 0.35–0.45 V (RHE) as compared to Pt/Pt.  相似文献   

3.
Electrochemically platinum plated aluminum (Al/Pt) was used as an electrode substrate for the electropolymerization of aminophenols and fabrication of composite electrodes based on platinum nano-particles. The poly(o-aminophenol) (PoAP), poly(m-aminophenol) (PmAP), and poly(p-aminophenol) (PpAP) were synthesized on the Al/Pt electrode, and further modification was performed by deposition of platinum nano-particles onto polymer matrixes. The electrochemical and morphological characteristic of the composed electrodes were carried out by cyclic voltammetry and scanning electron microscopy, respectively. The electrocatalytic oxidation of methanol on the composite electrodes was studied by cyclic voltammetry in 0.1 M sulfuric acid as supporting electrolyte. It was found that the Al/Pt/PoAP electrode incorporated Pt nano-particles (Al/Pt/PoAP/Pt) exhibits a higher electrocatalytic activity for the oxidation of methanol than the Al/Pt/PmAP/Pt and Al/Pt/PpAP/Pt electrodes. On the other hand, a higher catalytic current for methanol oxidation was found on the Al/Pt/PoAP/Pt electrode in comparison to bulk Pt and Al–Pt (Al with 0.2 mg cm−2 of Pt particles) electrodes. The effects of various parameters such as thickness of the polymer film, concentration of the monomer, Pt loading method and the Pt amounts, concentration of the methanol, and the medium temperature were studied on the electrooxidation of methanol. The long-term stability of the modified electrode has also been investigated.  相似文献   

4.
Controlling the morphology and composition of nanocatalysts constructed from metals and conductive polymers has attracted attention owing to their great potential for the development of high-efficiency catalysts for various catalytic applications. Herein, a facile synthetic approach for ultrathin-polyaniline-coated Pt–Ni nanooctahedra (Pt-Ni@PANI hybrids) with controllable PANI shell thicknesses is presented. Pt–Ni nanooctahedra/C catalysts enclosed by PANI shells with thicknesses from 0.6 to 2.4 nm were obtained by fine control over the amount of aniline. The various Pt-Ni@PANI hybrids exhibited electrocatalytic activity toward the methanol oxidation reaction that is highly dependent on the thickness of the PANI shell. Pt-Ni@PANI hybrids with the thinnest PANI shells (0.6 nm) showed markedly improved electrocatalytic performance for the methanol oxidation reaction compared with Pt-Ni@PANI hybrids with thicker PANI shells, Pt–Ni nanooctahedra/C, and commercial Pt/C due to synergistic benefits of ultrathin PANI shells and Pt–Ni alloy.  相似文献   

5.
Electrolytically deposited Ni on polyaniline film covered carbon paste electrode (Ni/PANI/CPE) was used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry, impedance spectroscopy, chronomethods, and polarization studies. The morphology and composition of the modified film were obtained using scanning electron microscope and energy dispersive X-ray analysis techniques. The electrooxidation of methanol in NaOH was found to be more efficient on Ni/PANI/CPE than on bare Ni, electrodeposited Ni on Pt, Ni on glassy carbon, and Ni on CPE substrates. Partial chemical displacement of dispersed Ni on PANI with Pt or Pd further improved its performance towards methanol oxidation.  相似文献   

6.
Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化   总被引:9,自引:0,他引:9  
以脉冲电流法制备的纳米纤维状聚苯胺(PANI)为Pt催化剂载体,用它制备了甲醇阳极氧化的催化电极Pt/(nano-fibular PANI).研究结果表明, Pt/(nano-fibular PANI)电极对甲醇氧化具有很好的电催化活性,并有协同催化作用.在相同的Pt载量条件下, Pt/(nano-fibular PANI)电极比Pt微粒修饰的颗粒状聚苯胺电极Pt/(granular PANI)具有更好的电催化活性.此外, Pt的电沉积修饰方法同样影响Pt/(nano-fibular PANI)电极对甲醇氧化的催化活性.脉冲电流法沉积Pt形成的复合电极较循环伏安法电沉积得到的Pt复合电极具有更优异的催化活性.  相似文献   

7.
Nickel ions were incorporated in NaY zeolite according to cation exchange mechanism. Then NiY zeolite was used as modifier for preparation of modified carbon paste electrode. The electrochemical behavior of NiY-modified carbon paste electrode (NiY/CPE) was studied in alkaline solution using cyclic voltammetry method. Ability of different electrodes containing NiY/CPE, Ni-NiY/CPE, Ni-NaY/CPE, and Ni/CPE for electrocatalytic oxidation of methanol was compared (three last electrodes prepared by open circuit accumulation of Ni(II) ions on the surface of NiY/CPE, NaY/CPE, and bare CPE, respectively). Results show that Ni-NiY/CPE is best catalyst for the electrochemical oxidation of methanol in alkaline solution and both process of earlier Ni ion incorporation through cation exchange in NaY zeolite and open circuit accumulation of Ni ion on the surface of electrode are essential to have good catalyst. Effect of graphite–zeolite ratio on electrocatalytic current was studied and 3:1 ratio of graphite–zeolite was selected as optimum ratio for preparing electrode. Ni-NiY/CPE has very good stability toward the methanol oxidation in concentration range of 0.005 to 0.5 M. Finally, using chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 1.56 × 104 cm3 mol−1 s−1.  相似文献   

8.
以Ni (Ac)2·4H2O和生物质材料丝瓜络为原料,通过先浸渍后热解的方法制备了低成本的镍纳米颗粒/丝瓜络衍生氮掺杂多孔碳纳米复合材料(Ni/T-dNPCN)。研究复合材料对甲醇的电催化性能,并讨论热解温度对复合材料结构和性能的影响。结果表明,Ni/T-dNPCN修饰玻碳电极(GCE)在碱性条件下对甲醇氧化反应(MOR)具有良好的电催化活性。其中,800℃煅烧得到的Ni/T-dNPCN800/GCE对1 mol·L-1甲醇具有最低的起始电位(0.344 V (vs Ag/AgCl))、最高的催化电流密度(质量活性:1 902 mA·mgNi-1;比活性:1.61 mA·cm-2)和最快的动力学反应过程(Tafel斜率:50.23 mV·dec-1),其催化活性约为商业化Pt/C/GCE的3.92倍。且计时电流测试表明,Ni/T-dNPCN800/GCE具有良好的稳定性。  相似文献   

9.
In this study, the electrocatalytic oxidation of methanol at nickel modified ionic liquid/carbon paste electrode (Ni/IL/CPE) in alkaline medium is presented. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, is incorporated into the electrode as a binder. Electrochemical impedance spectroscopy is employed to evaluate the electron transfer rate of this electrode. Ni(II) ions are incorporated into the electrode by immersion of this electrode in 1.0?M nickel sulfate solution. Cyclic voltammetry and chronoamperometry techniques are used for the electrochemical study of this modified electrode in the absence and the presence of methanol. The effect of methanol concentration on the anodic peak current shows an increase in the anodic peak current up to 1.25?M. Current density of Ni/IL/CPE for methanol oxidation in alkaline media is investigated by comparison with some of the previously reported electrodes. Results show that this electrode exhibits a high efficient electrocatalytic activity toward the oxidation of methanol with the current density of 17.6?mA?cm?2. The rate constant for chemical reaction between methanol and redox sites of electrode is calculated. This new proposed electrode is simple and efficient enough, and it can be widely used as anode in direct methanol fuel cell.  相似文献   

10.
Carbon-supported platinum-decorated nickel nanoparticles (denoted as Pt-Ni/C) with intimate contact of Pt and Ni are prepared by a galvanic displacement reaction between Ni/C nanoparticles and PtCl62− in aqueous solution. It demonstrates a higher mass activity and stability to methanol oxidation reaction than conventional Pt/C and PtRu/C catalysts by a rotating disk electrode in acid solution, which could be attributed to the modified electronic structure of the Pt-Ni/C nanoparticles.  相似文献   

11.
Pt-Ni alloy nanoparticles were produced by casting 2 or 10 mM H2PtCl6 solutions on a Ni column. The apparent particle size for the resultant Pt-Ni alloys increased with the concentration of the H2PtCl6 solution, while the content of Pt in the alloy decreased. The potential sweeps of 5 cycles in an H2SO4 aqueous solution for Pt-Ni (2 mM)/Ni and Pt-Ni (10 mM)/Ni electrodes led to electrochemical behavior similar to a polycrystalline Pt electrode, suggesting the formation of a few thin Pt layers on each Pt-Ni alloy surface. In electrochemical measurements, both Pt-Ni/Ni electrodes showed more negative onset potential of methanol oxidation and slower degradation of oxidation current of methanol than the polycrystalline Pt electrode. X-ray photoelectron spectroscopy of both Pt-Ni/Ni electrodes showed the shift of Pt4f peaks to a higher binding energy, suggesting that the increase in the d vacancy in the balance band 5d orbital of Pt contributed to the improved electrocatalytic activity and durability of the Pt-Ni/Ni electrodes.  相似文献   

12.
Effect of electrochemical oxidation of glassy carbon on deposition of platinum particles and electrocatalytic activity of platinum supported on oxidized glassy carbon (Pt/GCOX) were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + H2PtCl6 solution. Glassy carbon was anodically polarised in 0.5 M H2SO4 at 2.25 V vs. saturated calomel electrode (SCE) during 35 s. Electrochemical treatment of GC support, affecting not significantly the real Pt surface area, leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCOX electrode for methanol oxidation is larger than polycrystalline Pt and for more than one order of magnitude larger than Pt/GC electrode. This increase in activity indicates the pronounced role of organic residues of GC support on the properties of Pt particles deposited on glassy carbon.  相似文献   

13.
Films of binary and ternary composites of Pd, nanocarbon (C), and Ni are obtained on glassy carbon electrodes and investigated as electrocatalysts for methanol oxidation (MOR) in alkaline medium. Results show that among the electrocatalysts investigated, the apparent electrocatalytic activity of the Pd-0.5%C electrode is the greatest and that it decreases with increasing percentage of C in the composite. The Pd-0.5%C composite electrode has approximately two times higher activity than that of Pd electrode for MOR under similar experimental conditions. Introduction of Ni (1–2%) into the active Pd-0.5%C catalyst somewhat declines the apparent electrocatalytic activity of the electrode. The onset potential for MOR is observed to be the greatest negative at the Pd-0.5%C composite electrode, which gets shifted towards noble side by 80–100 mV with addition of Ni (1–2%).  相似文献   

14.
Platinum (Pt) nanoparticles were electrochemically deposited on multi-walled carbon nanotubes (MWCNTs) through a three-step process, including an electrochemical treatment of MWCNT, electro-oxidation of PtCl4 2− to Pt(IV) complex, and an electro-conversion of Pt(0) on MWCNT. The effect of formation conditions for Pt(IV) complexes on the Pt nanoparticals transformed was investigated. The structure and elemental composition of the resulting Pt/MWCNT electrode were characterized by transmission electron micrograph (TEM) and energy dispersive X-ray spectroscopy (EDX). The electrocatalytic properties of the resulting Pt/MWCNT electrode for methanol oxidation have been investigated. The high electrocatalytic activity and good stability of Pt/MWCNT electrode may be attributed to the high dispersion of platinum nanoparticles and the particular properties of the MWCNT supports.  相似文献   

15.
The influence of adsorbed tin and tin(IV) ions on the oxidation of methanol chemisorbed species as well as the methanol from the bulk of the solution was studied on a Pt electrode by voltammetric and radiometric methods. It was found that tin is not adsorbed as an ad-atom but rather as a divalent ion. Enhancement of the electrocatalytic oxidation of chemisorbed species derived from methanol was observed only in the potential range from 0.4 to 0.8 V. The influence of some factors on the electrocatalytic properties of platinum is discussed.  相似文献   

16.
A nickel hydroxide-modified nickel electrode (Ni(OH)2/Ni) was successfully prepared by the cyclic voltammetry (CV) method and the electrocatalytic properties of the electrode for formaldehyde and methanol oxidation have been investigated respectively. The Ni(OH)2/Ni electrode exhibits high electrocatalytic activity in the reaction. A new method has been developed for formaldehyde determination at the nickel hydroxide-modified nickel electrode and the experimental parameters were optimized. The oxidation peak current is linearly proportional to the concentration of formaldehyde in the range of 7.0 × 10?5 to 1.6 × 10?2 M with a detection limit of 2.0 × 10?5 M. Recoveries of artificial samples are between 93.3 and 103.5%. The effect of scan rate and methanol concentration on the electrochemical behavior of methanol were investigated respectively.  相似文献   

17.
Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.Dedicated to Professor Dr. Alan Bond on the occasion of his 60th birthday.  相似文献   

18.
Multi-walled carbon nanotubes (MWNTs) supported platinum nanoparticles with narrow size distribution were prepared by an organic colloidal process with sodium citrate as the coordination reagent and stabilizer, and ethylene glycol as the reduction reagent. A nonenzymatic glucose sensor with high sensitivity based on the Pt/MWNTs electrode was demonstrated. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to investigate the size distributions and the crystal structure of Pt nanoparticles on the MWNTs. The TEM images show that the Pt nanoparticles with about 2–4 nm in diameter are well dispersed on the MWNTs. The Pt/MWNTs shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution. At +0.5 V, the Pt/MWNTs nanocomposite electrode exhibits linearity in the range of 1 mM to 23 mM (R > 0.998) glucose with a response time of 11.6 s. The detection limit is 50 μM (S/N = 3). It was demonstrated that the Pt/MWNTs electrode with high electrocatalytic activity to glucose oxidation could find application in nonenzymatic detection of glucose.  相似文献   

19.
Carbon paste electrodes were modified by nickel phosphate nanoparticles and nickel phosphate Versailles Santa Barbara-5 molecular sieves. Then, transition metal ions of Ni(II) were incorporated to the nickel phosphate by immersion of the modified electrode in a 0.1-M nickel chloride solution. The electrochemical behaviors of the modified electrodes were studied using cyclic voltammetry. These modified electrodes were used as anode for the electrocatalytic oxidation of methanol in alkaline medium. The influence of some parameters such as different molecular sieves, scan rate of potential, and methanol concentration was investigated on the anodic peak height of the methanol oxidation. The best result was obtained by nickel phosphate nanoparticles.  相似文献   

20.
《Journal of Energy Chemistry》2017,26(6):1217-1222
Developing high-performance noble metal-free and free-standing catalytic electrodes are crucial for overall water splitting. Here, nickel sulfide(Ni_3S_2) and nickel selenide(Ni Se) are synthesized on nickel foam(NF) with a one-pot solvothermal method and directly used as free-standing electrodes for efficiently catalyzing hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline solution.In virtue of abundant active sites, the Ni_3S_2/NF and the NiS e/NF electrodes can deliver a current density of 10 m A cm~(-2) at only 123 m V, 137 m V for HER and 222 m V, 271 m V for OER. Both of the hierarchical Ni_3S_2/NF and Ni Se/NF electrodes can serve as anodes and cathodes in electrocatalytic overall watersplitting and can achieve a current density of 10 m A cm~(-2) with an applied voltage of ~1.59 V and 1.69 V,respectively. The performance of as-obtained Ni_3S_2/NF||Ni_3S_2/NF is even close to that of the noble metalbased Pt/C/NF||IrO_2/NF system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号