首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerical investigation of transpiration and ablation cooling   总被引:2,自引:0,他引:2  
To predict the integral performance of transpiration and ablation cooling during the reentry of hypersonic vehicles, an unsteady numerical model based on the assumption of thermal equilibrium is presented. The non-thermal equilibrium model and the thermal equilibrium model are coupled by the effective thermal properties of the porous matrix and the coolant. The calculation using the thermal equilibrium model shows the influence of the variation of the effective thermal properties on the numerical results by a comparison between constant and variable thermal properties. The comparison indicates that near the melting temperature of the porous matrix, the position of the moving boundary due to ablation is sensitive to the temperature, therefore, the variation of the thermal properties are considered in this paper. The process of ablation and transpiration cooling is simulated under different numerical conditions. The simulations demonstrate that the injection rate of coolant mass flow and initial temperature of cooling are important parameters for the control of the ablation process.  相似文献   

2.
The ultrafast cooling that occurs during high mass flux air-atomized spray impingement on a hot 6 mm thick stainless steel plate has been studied experimentally in terms of the nozzle inclination between 0° and 60°. The average mass flux of water used in the study accounts to 510 kg/m2 s. The coolants used in the study are pure water and surfactant water of 600 ppm concentration. The initial temperature of the plate has been maintained at 900 °C, which is the temperature of a hot strip on run-out table in steel industry. The transient surface heat flux and temperature histories have been estimated by an inverse heat solver using measured temperature input data. Heat transfer results demonstrates that optimum cooling efficiency (~2.76 MW/m2, 194 °C/s) for pure water has been achieved at 30° nozzle orientation. The inclined nozzle has not been found beneficial when surfactant water is used as the coolant.  相似文献   

3.
In the present experimental investigation, the liquid cooling in the micro channel fin heat sink with and without thermoelectric for central processor unit (CPU) of personal computer. The micro channel heat sinks with two different channel height are fabricated from the aluminum with the length, the width and the base thickness of 28, 40, 2?mm respectively. The de-ionized water is used as coolant. Effects of channel height, coolant flow rate, and run condition of PC on the CPU temperature are considered. The liquid cooling in micro-rectangular fin heat sink with thermoelectric is compared with the other cooling techniques. The thermoelectric has a significant effect on the CPU cooling of PC. The experiments are performed at no load and full load conditions within 60?min after steady state, which the mass flow rate are 0.023, 0.017 and 0.01?kg/s. The results heat transfer rate increase with increasing coolant flow rate and higher channel. When comparing with the other cooling system, cooling system with thermoelectric gives the highest efficiency. However, thermoelectric has the high or low heat transfer rate from heat rejected and cooling capacity conditions.  相似文献   

4.
This article presents a numerical approach to investigate the transpiration cooling problems with coolant phase change within porous matrix. A new model is based on the coupling of the two-phase mixture model (TPMM) with the local thermal non- equilibrium (LTNE), and used to describe the liquid coolant phase change and heat exchange processes in this article. The effects of thermal conductivity, porosity, and sphere diameter of the porous matrix on the temperature and saturation distributions within the matrix are studied. The results indicate that an increase in the porosity or sphere diameter can lead to an area dilation of two-phase region and a rise of liquid temperature; whereas an increase in the thermal conductivity of the porous matrix results only in a rise of liquid temperature, but drops of solid temperature and temperature gradient on the hot surface. The influence of hot surface pressure on cooling effect is discussed by numerical simulations, and numerical results show that the effect of the transpiration cooling will be worse under higher pressure. The investigation also discovers an inverse phenomenon to the past investigations on the transpiration cooling without coolant phase change, namely in two-phase region, coolant temperature may be higher than solid temperature. This inversion can be captured only by the new LTNE–TPMM.  相似文献   

5.
This paper presents a new mathematical model, semi-mixing model (SMM), to describe transpiration cooling with coolant phase change from liquid into vapor through two-phase process. The local heat exchange of fluid-solid within pores is considered in this model, and therefore it is closer to real transpiration cooling condition. The differences from the separated phase model and two-phase mixture model are that SMM can overcome the trouble of tracking phase change interface and avoid the inveracious numerical phenomenon, i.e., a thermal insulating layer occurs within the porous matrix. Using SMM, the corresponding numerical method is realized to simulate the processes of coolant moving, absorbing heat and evaporating within porous matrix. To validate SMM and the numerical strategy, an experiment is conducted. Using the validated SMM and numerical strategy, the effects of two-dimensional coolant injection rate and two-dimensional heat flux on transpiration cooling characteristics are simulated and analyzed. The simulations and analysis discover several interesting and valuable phenomena.  相似文献   

6.
Our previous research has revealed that, for vehicles with independently driven wheels, a torque distribution based on the ratio of the vertical load of each wheel to the total vehicle load is efficient for driving on flat ground. In this research, this method of torque distribution was extended to electric off-road vehicles driving on rough ground. In order to examine the driving efficiency of these vehicles, a numerical vehicle model was constructed in the pitch plane. Simulations using the numerical vehicle model on rough ground were conducted with a proposed torque distribution and control method. The numerical results from these simulations were compared with those of a conventional vehicle to evaluate the driving efficiency and trafficability on ground with various profiles. A comparison between the simulations demonstrated that the proposed method of torque distribution to the front and rear wheels based on the ratio of the vertical load is efficient for driving on rough ground.  相似文献   

7.
In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the “finish rolling temperature” in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.  相似文献   

8.
The 3-D freezing of water around a coolant carrying horizontal tube placed in an adiabatic rectangular cavity is investigated mainly by means of a numerical analysis. The results are not sensitive to the coolant flow velocity and the tube length, but are very responsive to the coolant inlet temperature and the initial water temperature. The numerical analysis predicts fairly experimental results without introducing a heat transfer coefficient.  相似文献   

9.
张鑫  陆阳  程迪  范学军 《力学学报》2022,54(11):3223-3237
针对飞行马赫数0 ~ 10的宽域飞行器对吸气式动力的需求, 提出了一种以氨为燃料和冷却剂的宽域吸气式变循环发动机, 其工作模态可有3种: 涡轮模态、预冷模态和冲压模态. 首先通过对该发动机各模态热力循环过程进行建模, 计算得到发动机比推力、比冲和总效率等性能参数, 初步验证其在马赫数0 ~ 10范围内工作的可行性; 然后, 选取甲烷和正癸烷为低温低密度和煤油类碳氢燃料的典型代表, 对比各模态下氨与碳氢燃料发动机的性能差异. 结果表明, 由于氨突出的当量总热沉和当量热值, 飞行马赫数3 ~ 5的预冷模态发动机性能各指标均优于碳氢燃料. 在涡轮模态和冲压模态下, 氨燃料发动机比冲较低, 但比推力和总效率优于碳氢燃料; 最后, 对比分析各类燃料马赫数0 ~ 10宽域工作特性, 发现氨预冷可以显著提升发动机比推力, 特别在高马赫数范围, 再生冷却通道内氨可发生裂解反应大量吸热并分解为氢气和氮气, 会进一步提升发动机比推力和比冲, 且不会堵塞冷却通道, 因此可胜任飞行马赫数0 ~ 10的宽范围飞行需求. 而煤油类碳氢燃料受限于比推力低和裂解结焦问题, 最高工作马赫数难以超过8. 本文提出的氨燃料吸气式变循环发动机, 当量冷却能力强且比推力高, 适合用于二级入轨飞行器的一级动力、高马赫数宽域吸气式飞行以及未来高超声速民航等场景.   相似文献   

10.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

11.
A microporous heat exchanger device is being developed for cooling high-power electronics. The device uses a mechanically compressed aluminum porous layer to improve the heat transfer at the coolant/solid interface and to provide more uniform cooling of the electronics. The hydraulic characteristics (porosity, permeability, and Forchheimer coefficient) of nine distinct compressed layers are obtained experimentally. These layers have porosity from 0.3 to 0.7 and permeability from 1.8 × 10−10 m2 to 1.2 × 10−9 m2. The inertia coefficient varies from 0.3 to 0.9. These hydraulic characteristics are used in the numerical simulations of a real microporous heat exchanger for cooling phased-array radars in development. Thermal and hydraulic performances are illustrated in terms of total pressure drop across the heat exchanger, maximum temperature difference in the direction transverse to the electronic modules, and maximum temperature within the coolant passage. Results indicate that the proposed design is capable of achieving a maximum transverse temperature difference of 2°C using polyalphaolephin as coolant.  相似文献   

12.
A transient, one-dimensional numerical model is developed to describe the processes of transpiration cooling and ablation of the porous matrix used for the cooling. This model is based on the assumption of local thermal equilibrium. The problem of moving boundary due to ablation of the porous matrix is treated by the front-fixing method. This paper discusses the results of numerical simulations under different conditions and control parameters of ablation process. It was found that cooling effects and ablation processes are influenced by the coolant mass flow rate, the intensity of the heat flux, and the initial temperature at the start of transpiration cooling. In additional to the above three parameters, the Stefan number and the Biot number can also influence the transient cooling process, control ablative thickness of the porous plate by the reduction of ablative speed and duration, respectively.  相似文献   

13.
Two numerical models are presented for predicting vehicle exhaust dispersion in complex urban areas with or without the wind field. The models not only reflect the effect of building and street canyon configuration on the pollutant propagation, but also are able to predict the turbulent energy produced by moving vehicles on the road. In particular, in the discrete model, turbulent energy and pollutant concentration produced by each vehicle are dynamically described in the Lagrangian method. The pollutant propagation is calculated with the advection–diffusion equation. The Reynolds averaged Navier–Stokes equations are numerically solved for the wind flows. The movement and heat release rate of the vehicles are treated as sources of the turbulent energy equation for the computation of turbulent energy produced by the moving vehicles. This paper reports the detailed implementation of the models. Four typical numerical tests were carried out to represent the performance of the proposed numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Turning characteristics of multi-axle vehicles   总被引:3,自引:0,他引:3  
This paper presents a mathematical model for multi-axle vehicles operating on level ground. Considering possible factors related to turning motion such as vehicle configuration and tire slip velocities, equations of motion were constructed to predict steerability and driving efficiency of such vehicles. Turning radius, slip angle at the mass center, and each wheel velocity were obtained by numerically solving the equations with steering angles and average wheel velocity as numerical inputs. To elucidate the turning characteristics of multi-axle vehicles, the effect of fundamental parameters such as vehicle speed, steering angles and type of driving system were examined for a sample of multi-axle vehicles. Additionally, field tests using full-scale vehicles were carried out to evaluate the basic turning characteristics on level ground.  相似文献   

15.
The recent decades have witnessed a remarkable advancement of very large scale integrated circuits (VLSI) and electronic equipments in micro-electronic industry. Meanwhile, the ever increasing power density of microdevices leads to the tough issue that thermal management becomes rather hard to solve. Conventional water cooling is widely used, but the convective coefficient is not high enough. Liquid metal owns much higher convective coefficient and has been identified as an effective coolant recently, but the high cost greatly precludes its large scale utilization. In this paper, a hybrid liquid metal–water cooling system which combines the advantages of both water and liquid metal cooling was proposed and demonstrated. By utilizing a liquid metal “heat spreader” in front of the water cooling module, this system not only owns more excellent cooling capability than that based on water alone, but also has much lower initial cost compared with absolute liquid metal cooling system. A series of experiments under different operation conditions have been performed to evaluate the cooling performance of this hybrid system. The compared results with absolute water cooling and liquid metal cooling system showed that the cooling capability of the new system is competitive with absolute liquid metal cooling, but the initial cost could be much lower. The theoretical thermal resistance model and economic feasibility also have been analyzed and discussed, which shows that the hybrid liquid metal–water cooling system is quite feasible and useful.  相似文献   

16.
 The film cooling performance on a convex surface subjected to zero and favourable pressure gradient free-stream flow was investigated. Adiabatic film cooling effectiveness values were obtained for five different injection geometries, three with cylindrical holes and two with shaped holes. Heat transfer coefficients were derived for selected injection configurations. CO2 was used as coolant to simulate density ratios between coolant and free-stream close to gas turbine engine conditions. The film cooling effectiveness results indicate a strong dependency on the free-stream Mach number level. Results obtained at the higher free-stream Mach number show for cylindrical holes generally and for shaped holes at moderate blowing rates significant higher film cooling effectiveness values compared to the lower free-stream Mach number data. Free-stream acceleration generally reduced adiabatic film cooling effectiveness relative to constant free-stream flow conditions. The different free-stream conditions investigated indicate no significant effects on the corresponding heat transfer increase due to film injection. The determined heat flux ratios or film cooling performance indicated that coolant injection with shaped film cooling holes is much more efficient than with cylindrical holes especially at higher blowing rates. Heat flux penalties can occur at high blowing rates when using cylindrical holes. Received on 29 May 2000  相似文献   

17.
The influence of the basic factors of cryogenic forcing on formation of the middle zone on the sonic boom and aerodynamic characteristics of the flying vehicle is studied by experimental and numerical methods. Experimental data obtained with alcohol or liquid nitrogen as an injected liquid are used for comparisons; as a result, the total effect of temperature and coolant evaporation can be determined. The influence of temperature is studied by means of numerical simulations of the cryogenic action of distributed injection of air. A comparison of numerical and experimental data reveals the effect of the coolant evaporation process on perturbed flow formation. It is demonstrated that evaporation of the coolant outgoing onto the vehicle surface should be intensified to increase the efficiency of cryogenic forcing (to decrease the coolant flow rate).  相似文献   

18.
High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit.  相似文献   

19.
Rapid development of super scale integration circuit (IC) provides unprecedented challenge to thermal control for aviation electronic equipments. To solve the problem of cooling electronic chips and devices for aircraft avionics, this paper experimentally investigated the characteristics of single-phase forced convection heat transfer and flow resistance in rectangular microchannels with two liquid coolants. One was 30% of ethanol–water solution, the most commonly used coolant in aviation. The other was FC-72, the latest coolant for electronic equipments. Based on the experimental data collected and those available in the open literature, comparisons and analyses were carried out to evaluate the influences of liquid velocity, supercooling temperature, microchannel structures and wall temperature etc. on the heat transfer behaviors. And the correlations of flow resistance and heat transfer characteristics were provided for the ethanol–water solution and FC-72 respectively. The results indicate transition from laminar to turbulent flow occurs at the Reynolds number of 750–1,250 for FC-72, and the behaviors of flow and heat transfer in rectangular microchannels strongly depend on the kind of coolant and geometric configuration of microchannels.  相似文献   

20.
A method of optimal wheel torque determination for electric motor vehicles is presented. Electric motor vehicles are increasing with the rise of public interest in environmental protection. In the case of vehicles driven by controllable motors on each individual wheel, the determination of the wheel torque is an essential factor for efficient driving. In this research, a method of optimal torque determination has been formulated by using the variational principle to minimize frictional work done by the tires with the ground contact. Optimal torque on each wheel for a four-wheel vehicle was numerically obtained by solving the equations under several driving conditions. The result of the numerical simulation is useful as a guide to control the motor torque of electric vehicles for efficient driving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号