首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.  相似文献   

2.
3.

Power dissipation problem is one of the most challenging problems in designing conventional electronic circuits. One of the best approaches to overcome this problem is to design reversible circuits. Nowadays, reversible logic is considered as a new field of study that has various applications such as optical information processing, design of low power CMOS circuits, quantum computing, DNA computations, bioinformatics and nanotechnology. Due to the vulnerability of the digital circuits to different environmental factors, the design of circuits with error-detection capability is considered a necessity. Parity preserving technique is known as one of the most famous methods for providing error-detection ability. Multiplication operation is considered as one of the most important operations in computing systems, which can play a significant role in increasing the efficiency of such systems. In this paper, two efficient 4-bit reversible multipliers are proposed using the Vedic technique. The Vedic technique is able to increase the speed of multiplication operation by producing partial products and their sums simultaneously in a parallel manner. The first architecture lacks the parity preserving potential, while the second architecture has the ability parity preserving. Since a 4-bit Vedic multiplier includes 2-bit Vedic multipliers and 4-bit ripple carry adders (RCA), so in the first design, TG, PG and FG gates have been used to design an efficient 2-bit reversible Vedic multiplier, as well as PG gate and HNG block have been applied as a half-adder (HA) and full-adder (FA) in the 4-bit RCAs. Also, in the second design, 2-bit parity preserving reversible Vedic multiplier has been designed using FRG, DFG, ZCG and PPTG gates as well as ZCG and ZPLG blocks have been utilized as HA and FA in the 4-bit RCAs. Proposed designs are compared in terms of evaluation criteria of circuits such as gate count (GC), number of constant inputs (CI), number of garbage outputs (GO), quantum cost (QC), and hardware complexity. The results of the comparisons indicate that the proposed designs are more efficient compared to available counterparts.

  相似文献   

4.

Reversible logic has been considered as an important solution to the power dissipation problem in the existing electronic devices. Many universal reversible libraries that include more than one type of gates have been proposed in the literature. This paper proposes a novel reversible n-bit gate that is proved to be universal for synthesizing reversible circuits. Reducing the reversible circuit synthesis problem to permutation group allows Schreier-Sims Algorithm for the strong generating set-finding problem to be used in the synthesize of reversible circuits using the proposed gate. A novel optimization rules will be proposed to further optimize the synthesized circuits in terms of the number of gates, the quantum cost and the utilization of library to achieve better results than that shown in the literature.

  相似文献   

5.
Since Controlled-Square-Root-of-NOT (CV, CV?) gates are not permutative quantum gates, many existing methods cannot effectively synthesize optimal 3-qubit circuits directly using the NOT, CNOT, Controlled-Square-Root-of-NOT quantum gate library (NCV), and the key of effective methods is the mapping of NCV gates to four-valued quantum gates. Firstly, we use NCV gates to create the new quantum logic gate library, which can be directly used to get the solutions with smaller quantum costs efficiently. Further, we present a novel generic method which quickly and directly constructs this new optimal quantum logic gate library using CNOT and Controlled-Square-Root-of-NOT gates. Finally, we present several encouraging experiments using these new permutative gates, and give a careful analysis of the method, which introduces a new idea to quantum circuit synthesis.  相似文献   

6.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

7.
In recent years, reversible logic has emerged as a promising computing paradigm having application in low-power CMOS, quantum computing, nanotechnology and optical computing. Optical logic gates have the potential to work at macroscopic (light pulses carry information), or quantum (single photons carry information) levels with great efficiency. However, relatively little has been published on designing reversible logic circuits in all-optical domain. In this paper, we propose and design a novel scheme of Toffoli and Feynman gates in all-optical domain. We have described their principle of operations and used a theoretical model to assist this task, finally confirming through numerical simulations. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) can play a significant role in this field of ultra-fast all-optical signal processing. The all-optical reversible circuits presented in this paper will be useful to perform different arithmetic (full adder, BCD adder) and logical (realization of Boolean function) operations in the domain of reversible logic-based information processing.  相似文献   

8.

Multiple valued quantum logic is a promising research area in quantum computing technology having several advantages over binary quantum logic. Adder circuits as well as subtractor circuits are the major components of various computational units in computers and other complex computational systems. In this paper, we propose a quaternary quantum reversible half-adder circuit using quaternary 1-qudit gates, 2-qudit Feynman and Muthukrishnan-Stroud gates. Then we propose a quaternary quantum reversible full adder and a quaternary quantum parallel adder circuit. In addition, we propose a quaternary quantum reversible parallel adder/subtractor circuit. The proposed designs are compared with existing designs and improvements in terms of hardware complexity, quantum cost, number of constant inputs and garbage outputs are reported.

  相似文献   

9.
This study proposes and construct a primitive quantum arithmetic logic unit (qALU) based on the quantum Fourier transform (QFT). The qALU is capable of performing arithmetic ADD (addition) and logic NAND gate operations. It designs a scalable quantum circuit and presents the circuits for driving ADD and NAND operations on two-input and four-input quantum channels, respectively. By comparing the required number of quantum gates for serial and parallel architectures in executing arithmetic addition, it evaluates the performance. It also execute the proposed quantum Fourier transform-based qALU design on real quantum processor hardware provided by IBM. The results demonstrate that the proposed circuit can perform arithmetic and logic operations with a high success rate. Furthermore, it discusses in detail the potential implementations of the qALU circuit in the field of computer science, highlighting the possibility of constructing a soft-core processor on a quantum processing unit.  相似文献   

10.
A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.  相似文献   

11.
The concept, the present status, key issues and future prospects of a novel hexagonal binary decision diagram (BDD) quantum circuit approach for III–V quantum large-scale integrated circuits (QLSIs) are presented and discussed. In this approach, the BDD logic circuits are implemented on III–V semiconductor-based hexagonal nanowire networks controlled by nanoscale Schottky gates. The hexagonal BDD QLSIs can operate at delay-power products near the quantum limit in the quantum regime as well as in the many-electron classical regime. To demonstrate the feasibility of the present approach, GaAs Schottky wrap gate (WPG)-based single-electron BDD node devices and their integrated circuits were fabricated and their proper operations were confirmed. Selectively grown InGaAs sub-10 nm quantum wires and their hexagonal networks have been investigated to form high-density hexagonal BDD QLSIs operating in the quantum regime at room temperature.  相似文献   

12.
Optimal implementation of quantum gates is crucial for realization of quantum computation. We slightly modify the Khaneja-Glaser decomposition (KGD) for n-qubits and give a new Cartan subalgbra in the second step of the decomposition. Based on this modified KGD, we investigate the realization of three-qubit logic gate and obtain the result that a general three-qubit quantum logic gate can be implemented using at most 73 one-qubit gates rotations with respect to the y and z axes and 26 CNOT gates.  相似文献   

13.
Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area.  相似文献   

14.
Quantum logical operations using two-dimensional NMR have recently been described using the scalar coupling evolution technique [J. Chem. Phys. 109, 10603 (1998)]. In the present paper, we describe the implementation of quantum logical operations using two-dimensional NMR, with the help of spin- and transition-selective pulses. A number of logic gates are implemented using two and three qubits with one extra observer spin. Some many-in-one gates (or Portmanteau gates) are also implemented. Toffoli gate (or AND/NAND gate) and OR/NOR gates are implemented on three qubits. The Deutsch-Jozsa quantum algorithm for one and two qubits, using one extra work qubit, has also been implemented using spin- and transition-selective pulses after creating a coherent superposition state in the two-dimensional methodology.  相似文献   

15.
Quantum computing has emerged as one of the most promising technology due to its powerful computing capability. And quantum basic circuits like quantum comparator, quantum adder etc, are the foundation to realize quantum computing. In this paper, we present an efficient design to realize the comparison of two n-bit quantum logic states via only a single ancillary bit. Our proposed comparator compares two n-bit quantum logic states and identifies which of them is the largest, which of them is the smallest, and which of them is equal in linear quantum depth. Moreover, we analyze the superior performance of our proposed comparator in terms of auxiliary bits compared with the existing quantum logic comparators.  相似文献   

16.
In this article, we propose the realization of XNOR logic function by using all-optical XOR and NOT logic gates. Initially, both XOR and NOT gates are designed, simulated and optimized for high contrast outputs. T-shaped waveguides are created on the photonic crystal platform to realize these logic gates. An extra input is used to perform the inversion operation in the NOT gate. Inputs in both the gates are applied with out of phase so as to have a destructive interference between them and produce negligible intensity for logic ‘0'. The XOR and NOT gates are simulated using Finite Difference Time Domain method which results with a high contrast ratio of 55.23?dB and 54.83?dB, respectively at a response time of 0.136?ps and 0.1256?ps. Later, both the gates are cascaded by superimposing the output branch of the waveguide of XOR gate with the input branch of the waveguide of NOT gate so that it can be resulted with compact size for XNOR logic function. The resultant structure of XNOR logic came out with the contrast ratio of 12.27?dB at a response time of 0.1588?ps. Finally, it can be concluded that the proposed structures with fair output performance can suitably be applied in the design of photonic integrated circuits for high speed computing and telecommunication systems.  相似文献   

17.
Zheng-Yin Zhao 《中国物理 B》2021,30(8):88501-088501
Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.  相似文献   

18.
Multilevel quantum coherence and its quantum‐vacuum counterpart, where a three‐level dark state is involved, are suggested in order to achieve new photonic and quantum optical applications. It is shown that such a three‐level dark state in a four‐level tripod‐configuration atomic system consists of three lower levels, where constructive and destructive quantum interference between two control transitions (driven by two control fields) arises. We point out that the controllable optical response due to the double‐control tunable quantum interference can be utilized to design some fascinating new photonic devices such as logic gates, photonic transistors and switches at quantum level. A single‐photon two‐input XOR logic gate (in which the incident “gate” photons are the individual light quanta of the two control fields) based on such an effect of optical switching control with an EIT (electromagnetically induced transparency) microcavity is suggested as an illustrative example of the application of the dark‐state manipulation via the double‐control quantum interference. The present work would open up possibility of new applications in both fundamental physics (e.g., field quantization and relevant quantum optical effects in artificial systems that can mimic atomic energy levels) and applied physics (e.g., photonic devices such as integrated optical circuits at quantum level).  相似文献   

19.
Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum information processing. However, photons, one of the best candidates for qubits, suffer from a lack of strong nonlinear coupling, which is required for quantum logic operations. Here we show how this drawback can be overcome by reporting a proof-of-principle experimental demonstration of a nondestructive controlled-NOT (CNOT) gate for two independent photons using only linear optical elements in conjunction with single-photon sources and conditional dynamics. Moreover, we exploit the CNOT gate to discriminate all four Bell states in a teleportation experiment.  相似文献   

20.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号