首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A digraph is arc-locally in-semicomplete if for any pair of adjacent vertices x,y, every in-neighbor of x and every in-neighbor of y either are adjacent or are the same vertex. In this paper, we study the structure of strong arc-locally in-semicomplete digraphs and prove that a strong arc-locally in-semicomplete digraph is either arc-locally semicomplete or in a special class of digraphs. Using this structural characterization, we show that a 2-strong arc-locally in-semicomplete digraph is arc-locally semicomplete and a conjecture of Bang-Jensen is true.  相似文献   

2.
A strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-super-connected line digraphs, Cartesian product and lexicographic product of two digraphs. Furthermore, we study double-super-connected Abelian Cayley digraphs and illustrate that there exist double-super-connected digraphs for any given order and minimum degree.  相似文献   

3.
A k‐king in a digraph D is a vertex which can reach every other vertex by a directed path of length at most k. We consider k‐kings in locally semicomplete digraphs and mainly prove that all strong locally semicomplete digraphs which are not round decomposable contain a 2‐king. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 279–287, 2010  相似文献   

4.
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi-complete digraphs is precisely the class of proper circular-arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.  相似文献   

5.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

6.
A digraph is said to be super-connected if every minimum vertex cut is the out-neighbor set or in-neighbor set of a vertex. A digraph is said to be reducible, if there are two vertices with the same out-neighbor set or the same in-neighbor set. In this paper, we prove that a strongly connected arc-transitive oriented graph is either reducible or super-connected. Furthermore, if this digraph is also an Abelian Cayley digraph, then it is super-connected.  相似文献   

7.
A digraph is quasi-transitive if there is a complete adjacency between the inset and the outset of each vertex. Quasi-transitive digraphs are interseting because of their relation to comparability graphs. Specifically, a graph can be oriented as a quasi-transitive digraph if and only if it is a comparability graph. Quasi-transitive digraphs are also of interest as they share many nice properties of tournaments. Indeed, we show that every strongly connected quasi-transitive digraphs D on at least four vertices has two vertices v1 and v2 such that Dvi is strongly connected for i = 1, 2. A result of tournaments on the existence of a pair of arc-disjoint in- and out-branchings rooted at the same vertex can also be extended to quasi-transitive digraphs. However, some properties of tournaments, like hamiltonicity, cannot be extended directly to quasi-transitive digraphs. Therefore we characterize those quasi-transitive digraphs which have a hamiltonian cycle, respectively a hamiltonian path. We show the existence of highly connected quasi-transitive digraphs D with a factor (a collection of disjoint cycles covering the vertex set of D), which have a cycle of every length 3 ≦ k ≦ |V(D)| ? 1 through every vertex and yet they are not hamiltonian. Finally we characterize pancyclic and vertex pancyclic quasi-transitive digraphs. © 1995, John Wiley & Sons, Inc.  相似文献   

8.
A digraph is connected-homogeneous if any isomorphism between finite connected induced subdigraphs extends to an automorphism of the digraph. We consider locally-finite connected-homogeneous digraphs with more than one end. In the case that the digraph embeds a triangle we give a complete classification, obtaining a family of tree-like graphs constructed by gluing together directed triangles. In the triangle-free case we show that these digraphs are highly arc-transitive. We give a classification in the two-ended case, showing that all examples arise from a simple construction given by gluing along a directed line copies of some fixed finite directed complete bipartite graph. When the digraph has infinitely many ends we show that the descendants of a vertex form a tree, and the reachability graph (which is one of the basic building blocks of the digraph) is one of: an even cycle, a complete bipartite graph, the complement of a perfect matching, or an infinite semiregular tree. We give examples showing that each of these possibilities is realised as the reachability graph of some connected-homogeneous digraph, and in the process we obtain a new family of highly arc-transitive digraphs without property Z.  相似文献   

9.
Let D be an edge-coloured digraph, V(D) will denote the set of vertices of D; a set NV(D) is said to be a kernel by monochromatic paths of D if it satisfies the following two conditions: For every pair of different vertices u,vN there is no monochromatic directed path between them and; for every vertex xV(D)−N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we consider some operations on edge-coloured digraphs, and some sufficient conditions for the existence or uniqueness of kernels by monochromatic paths of edge-coloured digraphs formed by these operations from another edge-coloured digraphs.  相似文献   

10.
A linear directed forest is a directed graph in which every component is a directed path.The linear arboricity la(D) of a digraph D is the minimum number of linear directed forests in D whose union covers all arcs of D. For every d-regular digraph D, Nakayama and P′eroche conjecture that la(D) = d + 1. In this paper, we consider the linear arboricity for complete symmetric digraphs,regular digraphs with high directed girth and random regular digraphs and we improve some wellknown results. Moreover, we propose a more precise conjecture about the linear arboricity for regular digraphs.  相似文献   

11.
Let c(x,y) denote the maximum number of edge-disjoint directed paths joining x to y in the digraph G. It is shown that, for a given point a of G, c(a,x) ≤ c(x,a) for any x implies that the outdegree of a is ≤ its indegree. An immediate consequence is Kotzig's conjecture: Given a digraph G, c(x,y) = c(y,x) for every x, y if and only if the graph is pseudo-symmetric, i.e., each point has the same indegree and outdegree (the “if” part having been proved by Kotzig). The same method is applied to prove a weakened form of a conjecture of N. Robertson, while the original conjecture is disproved.  相似文献   

12.
An antipath in a digraph is a semipath containing no (directed) path of length 2. A digraph D is randomly antitraceable if for each vertex v of D, any antipath beginning at v can be extended to a hamiltonian antipath beginning at v. In this paper randomly antitraceable digraphs are characterized.  相似文献   

13.
We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X. We study graphs that permit an orientation having such a set and give complexity results and characterizations. Furthermore, we study the computational complexity of the (weighted) efficient total domination problem for several digraph classes. In particular we deal with most of the common generalizations of tournaments, like locally semicomplete and arc-locally semicomplete digraphs.  相似文献   

14.
The central observation of this paper is that if εn random arcs are added to any n‐node strongly connected digraph with bounded degree then the resulting graph has diameter 𝒪(lnn) with high probability. We apply this to smoothed analysis of algorithms and property testing. Smoothed Analysis: Recognizing strongly connected digraphs is a basic computational task in graph theory. Even for digraphs with bounded degree, it is NL‐complete. By XORing an arbitrary bounded degree digraph with a sparse random digraph R ∼ 𝔻n,ε/n we obtain a “smoothed” instance. We show that, with high probability, a log‐space algorithm will correctly determine if a smoothed instance is strongly connected. We also show that if NL ⫅̸ almost‐L then no heuristic can recognize similarly perturbed instances of (s,t)‐connectivity. Property Testing: A digraph is called k‐linked if, for every choice of 2k distinct vertices s1,…,sk,t1,…,tk, the graph contains k vertex disjoint paths joining sr to tr for r = 1,…,k. Recognizing k‐linked digraphs is NP‐complete for k ≥ 2. We describe a polynomial time algorithm for bounded degree digraphs, which accepts k‐linked graphs with high probability, and rejects all graphs that are at least εn arcs away from being k‐linked. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

15.
In this paper, D=(V(D),A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V(D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever uvwz in D, then u and z are adjacent or u=z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasi-transitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.  相似文献   

16.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

17.
Let |D| and |D|+n denote the number of vertices of D and the number of vertices of outdegree n in the digraph D, respectively. It is proved that every minimally n‐connected, finite digraph D has |D|+nn + 1 and that for n ≥ 2, there is a cn > 0 such that for all minimally n‐connected, finite digraphs D. Furthermore, case n = 2 of the following conjecture is settled which says that every minimally n‐connected, finite digraph has a vertex of indegree and outdegree equal to n. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 129–144, 2002  相似文献   

18.
We consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on these classes. As a byproduct of our method we develop polynomial algorithms for the following problem: Given a quasi-transitive digraph D with real-valued vertex costs, find, for each j=1,2,…,|V(D)|, j disjoint paths P1,P2,…,Pj such that the total cost of these paths is minimum among all collections of j disjoint paths in D.  相似文献   

19.
《Journal of Graph Theory》2018,87(4):492-508
The dichromatic number of a digraph D is the least number k such that the vertex set of D can be partitioned into k parts each of which induces an acyclic subdigraph. Introduced by Neumann‐Lara in 1982, this digraph invariant shares many properties with the usual chromatic number of graphs and can be seen as the natural analog of the graph chromatic number. In this article, we study the list dichromatic number of digraphs, giving evidence that this notion generalizes the list chromatic number of graphs. We first prove that the list dichromatic number and the dichromatic number behave the same in many contexts, such as in small digraphs (by proving a directed version of Ohba's conjecture), tournaments, and random digraphs. We then consider bipartite digraphs, and show that their list dichromatic number can be as large as . We finally give a Brooks‐type upper bound on the list dichromatic number of digon‐free digraphs.  相似文献   

20.
A locally semicomplete digraph is a digraph D=(V,A) satisfying the following condi-tion for every vertex x∈V the D[O(x)] and D[I(x)] are semicomplete digraphs. In this paper,we get some properties of cycles and determine the exponent set of primitive locally semicompleted digraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号