首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different chemical modifiers for use with electrothermal atomic absorption spectrometry (ET AAS) were investigated in relation to determining the selenium in human urine samples. The samples were diluted in a solution containing 1% v/v HNO3 and 0.02% m/v cetyltrimethylammonium chloride (CTAC). Studying the modifiers showed that the use of either Ru or Ir as the permanent modifier gave low sensitivity to Se and the peak shape was very noisy, while Zr or Rh gave no peak at all. The same occurred when Zr was used in solution. For mixtures of permanent modifiers, Ir plus Rh or Zr plus Rh gave very low sensitivity, Zr plus Rh with co-injection of Ir in solution was also not efficient, Zr plus Rh in solution gave good sensitivity, but the best results were obtained with a mixture of Zr and Rh as the permanent modifier and co-injection of Rh in solution. Using this last modifier, the following dilutions with the HNO3 and CTAC were studied: 1:1, 1:2, 1:3 and 1:4. The best dilution was 1:1, which promoted good sensitivity and a more defined peak shape and made it possible to correct for the background using a deuterium arc lamp. Under these conditions, a characteristic mass of 26±0.2 pg was obtained for Se in aqueous solution. Six certified urine samples were analyzed using matrix matching calibration and the measured concentrations were in agreement with the certified values, according to a t-test at the 95% confidence level. Recovery tests were carried out and the recoveries were in the range 100–103%, with relative standard deviation better than 9%. The limit of detection (LOD, 3 sd, n=10) was 3.0 μg L−1 in the sample. The treated graphite tube could be used for at least 600 atomization cycles without significant alteration of the analytical signal.  相似文献   

2.
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l−1 HNO3 and in 1+1 v/v diluted wine using mixtures of Pd(NO3)2+Mg(NO3)2 and NH4H2PO4+Mg(NO3)2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l−1 HNO3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10–1.0 μg l−1 Cd and 5.0–50 μg l−1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l−1 for Cd, 0.8 μg l−1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l−1 and for Pb at 500 μg l−1. The relative standard deviations (n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.  相似文献   

3.
A method was developed for the determination of selenium in human milk using electrothermal atomic absorption spectrometry. The use of chemical modifiers as well as their implications during the pyrolysis step was examined. The chemical modifiers that were studied were Zr, Ir as well as the mixed modifier Zr-Ir. The Ir modifier stabilized selenium at 1000 °C, Zr at 800 °C, while the mixed modifier at 1200 °C. The effect of modifier mass was studied and was found that better results are achieved with addition of 2 μg Zr and 2 μg Ir. The characteristic masses of selenium in the presence of Zr, Ir and the mixed modifier were found to be 73.3, 18.0 and 14.7 pg, respectively, while the corresponding limits of detection were found 2.0, 0.50 and 0.41 μg l−1. Consequently better results were obtained with the mixed modifier. The developed method was applied for the determination of selenium in human milk, which was digested with a HNO3 + H2O2 mixture in a microwave oven. The limit of detection of the method was 1.37 μg l−1, the characteristic mass, m0, was 48.8 pg and the repeatability was less than 5% as R.S.D.(%). Matrix matched calibration was used. Recoveries were estimated to be 93-105%. The method was applied to breast milk of Greek women (n = 9) and the Se content was found to be in the range 16.7-42.6 μg l−1 with mean value 27.4 ± 5.5 μg l−1.  相似文献   

4.
《Analytical letters》2012,45(5-6):592-602
The aim of the present work was to develop and validate a rapid and accurate method of arsenic determination in leachate samples by electrothermal atomic absorption spectrometry. Leachate samples from sanitary landfills are considered difficult samples to analyze due to severe matrix interferences. A comparative study of various chemical modifiers was performed: Pd, Mg, Au, Pt, Ru, Rh, Ir, C6H8O7 (citric acid), Pd + Mg, Ir + Mg, and the permanent modifier Zr – Ir.

Among the modifiers tested, the mixture 5 µg Ir + 40 µg Mg provided the best performance, followed by the permanent modifier Zr – Ir (a coating of 200 µg Zr + 20 µg Ir). The permanent modifier was finally chosen due to the decreased background signal and sufficient sensitivity.

In order to investigate the presence of matrix interference and exploit the possibility of performing calibrations by simple aqueous solutions, calibration with aqueous standards, matrix matched standards and with standard additions was performed. It was observed that, in the presence of the Zr – Ir permanent modifier, the slopes of the calibration curve and the matrix-matched/standard addition curves were statistically different (checked by t-test). The recoveries from matrix-matched calibrations for three concentration levels were ranged between 96.4% and 100%. Precision experiments were also performed and the relative standard deviation (%RSD) for four different concentrations was ≤10%. The method was applied to the determination of arsenic in leachate samples collected in the solid waste sanitary landfill of Ano Liossia, Attika, Greece.  相似文献   

5.
A method for the determination of molybdenum in whole blood by atomic absorption spectrometry with electrothermal atomization was developed and evaluated. Erbium (25 μg) was chosen from several potential chemical modifiers (Sm, Lu, Ho, Eu and Pd+Mg) as the most appropriate for the sensitive and reliable determination of molybdenum in such sample. The process used was direct dilution of the sample in a ratio 1:2 with a 0.1% (v/v) Triton X-100 solution. The injection of 20 μl of a solution of 15% (w/v) hydrogen peroxide and running the temperature program after 5 firings greatly reduced the effect of build-up of carbonaceous residues within the atomizer. The limit of detection and working ranges, respectively, were 0.6 and 2.0–100.0 μg l−1, and the characteristic mass was 7.2 pg. The relative standard deviation varied from 0.8 to 1.5% for within and between batch determinations, respectively. The determination of molybdenum in Seronorm™ Trace Elements in Whole Blood with known added amounts of the analyte was performed to asses the accuracy. The optimized procedure has been applied to the determination of molybdenum in whole blood specimens of 20 subjects taken before and 10–12 h after receiving an over-supply of 1 mg of molybdenum. The molybdenum concentrations (±S.D.) were 10.9±0.4 μg Mo l−1 (range 9.9–11.6 μg Mo l−1) and 15.4±0.4 μg Mo l−1 (range 13.1–16.9 μg Mo l−1) for the individuals before and after the administration of molybdenum.  相似文献   

6.
A tungsten–rhodium coating on the integrated platform of a transversely heated graphite atomizer is proposed as a permanent chemical modifier for the determination of Cd, Pb, and Se by electrothermal atomic absorption spectrometry. It was demonstrated that coating with 250 μg W+200 μg Rh is as efficient as the conventional Mg(NO3)2+NH4H2PO4 or Pd+Mg(NO3)2 modifiers for avoiding most serious interferences. The permanent W–Rh modifier remains stable for 300–350 firings of the furnace, and increases tube lifetime by 50%–100% when compared to pyrolytic carbon integrated platforms. Also, there is less degradation of sensitivity during the atomizer lifetime when compared with the conventional modifiers, resulting in a decreased need of re-calibration during routine analysis. The characteristic masses and detection limits achieved using the permanent modifier were respectively: Cd 1.1±0.4 pg and 0.020 μgL−1; Pb 30±3 pg and 0.58 μgL−1 and Se 42±5 pg and 0.64μgL−1. Results from the determination of these elements in water reference materials were in agreement with the certified values, since no statistical differences were found by the paired t-test at the 95% level.  相似文献   

7.
The role of modifiers in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of refractory elements such as La or U and carbide forming elements such as B has been studied. Solutions of NH4F, NH4Cl, NH4Br, NaCl, NaF, NH4HSO4, (NH4)2HPO4, the gaseous halogenated hydrocarbons CHF3 and CCl2F2 and HCl have been used as modifiers.The mechanism of the modifier effect and the influence of modifiers on sensitivity enhancement have been investigated. The sensitivity enhancements are great enough to achieve absolute detection limits of 2–6 pg for boron and 10 fg for La and U. The signal reproducibility is 0.5–3.0% for a concentration of 1 μg 1−1 La and U, and 20 μg 1−1 boron. Therefore, by adding modifiers, the use of ETV-ICP-MS can be extended to trace element determination of refractory and carbide forming elements in μl amounts of sample.  相似文献   

8.
The use of Ir, W and Zr-coated graphite tubes, as permanent chemical modifiers, was studied for the determination of chromium in human scalp hair by ETAAS using the slurry sampling technique. The use of Mg(NO3)2 and Pd, as aqueous chemical modifiers, was also investigated and compared to the use of the permanent chemical modifiers. Scalp hair samples were pulverized using a Zr vibrational ball mill, (mean particle diameter of 0.8 μm) and suspended in ultrapure water. The lowest limit of detection, 44.5 μg kg–1,was achieved for the use of W-coated graphite tubes. The repeatability of the overall procedures (slurry preparation and ETAAS determination) were 15.7, 14.5 and 16.7% for W- and Zr-coated graphite tubes and Mg(NO3)2, respectively. The methods were applied to several reference materials, CRM 397 (human hair), DOLT-1 (dogfish liver) and DORM-1 (dogfish muscle), and the results obtained were in agreement to the certified values. Finally, the methods were applied to several human scalp hair samples from healthy adults.  相似文献   

9.
Rhodium (Rh) was investigated as a permanent modifier for the atomization of Pb from biological fluids in W-filament atomic absorption spectrometry (AAS). Heating the W-filament with a Rh solution provided a protective coating for subsequent determinations of Pb in blood and urine matrices. The W-filament AAS instrumentation used was based on a prototype design that utilized self-reversal background correction scheme and peak area measurements. We found that Rh not only stabilized Pb during the pyrolysis step, but also facilitated the removal of carbonaceous residues during the cleaning step, requiring much less power than with phosphate modifier. Thus, the filament lifetime was greatly extended to over 300 firings. Periodic reconditioning with Rh was necessary every 30 firings or so. Conditioning the filament with Rh also permitted direct calibration using simple aqueous Pb standards. The method detection limit for blood Pb was approximately 1.5 μg dl−1, similar to that reported previously. Potential interferences from concomitants such as Na, K, Ca and Mg were evaluated. Accuracy was verified using lead reference materials from the National Institute of Standards and Technology and the New York State Department of Health. Blood lead results below 40 μg dl−1 were within ±1 μg dl−1 of certified values, and within ±10% above 40 μg dl−1; within-run precision was ±10% or better. Additional validation was reported using proficiency test materials and human blood specimens. All blood lead results were within the acceptable limits established by regulatory authorities in the US. When measuring Pb in urine, sensitivity was reduced and matrix-matched calibration became necessary. The method of detection limit was 27 μg l−1 for urine Pb. Urine lead results were also validated using an acceptable range comparable to that established for blood lead by US regulatory agencies.  相似文献   

10.
The determination of beryllium using electrothermal atomic absorption spectrometry with deuterium background correction in the presence of various isomorphous metals and Mg(NO3)2 was studied. While, Eu, Ir and Sm had no effect on the transient signals, the addition of Lu and Mg(NO3)2 improved the sensitivity of the beryllium signal with respect to that obtained in the absence of modifier. Although, Mg(NO3)2 has improved the signal with respect to its sensitivity, it also increased the tail and the background (BG) signals, specially when urine samples are under study. Whereas, when Lu was used the analytical signal is virtually free of BG interference indicating that the urine matrix interference was almost eliminated. Besides, the addition of 6 μg of Lu ensured that the signals were effectively constant for five firings following the furnace program, which included: three drying, and the pyrolysis, atomization, cleaning and cooling steps. The effect of some components, likely to interfere in the accurate determination of beryllium (such as: Al, Ca, Cl, Co, Cr, Fe, Mg and Mn) were investigated. At the physiological levels, most of these elements had no effect, except in the case of chloride when Mg(NO3)2 was used as modifier. In this case, the tolerance limit was of 3000 mg Cl l−1. The characteristic masses were 1.19, 0.45 and 0.48 pg, when integrated absorbance was measured for beryllium without the addition of any modifier and in the presence of Lu and Mg(NO3)2, respectively. The limits of detection (3σ) were 85, 19 and 58 fg, respectively. The accuracy and precision with the use of Lu and Mg(NO3)2 was tested for the direct determination of beryllium in urine samples. Quantification was performed with aqueous standards. The results obtained for the determination of beryllium in reference materials (Trace Elements in Urine), together with good recovery of spiked analyte, using either Lu or Mg(NO3)2 modification demonstrate the applicability of the procedure to the analysis of real samples. However, Lu provided the most accurate results. Also, the addition of Lu enhanced the precision of the measurements to levels of 1.8% relative standard deviation instead of 5.6 and 3.3% for the case of beryllium alone and with the addition of Mg(NO3)2.  相似文献   

11.
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l−1 for the determination of Cu and Pb, and 5.0 g l−1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l−1 HNO3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l−1 Cd2+, 30 μg l−1 Pb2+, and 10 μg l−1 Cu2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.  相似文献   

12.
A flow injection system was coupled to a tungsten coil electrothermal atomizer (150 W) for on-line separation and preconcentration of lead based on its electrochemical reduction on the atomizer surface. The electrochemical cell is built up inside the furnace by using a Pt flow-through anode and the atomizer itself as the flow-through cathode. The manifold and the tungsten coil power supply were controlled by a computer running a program written in Visual Basic, which was utilized in synchronism with the original software of the atomic absorption spectrometer. The flow-through anode (50 mm long, 0.7 mm i.d.) was inserted in tip of the autosampler arm by replacing the last section of the PTFE sample delivering tube. The tungsten coil atomizer and the counter electrode were easily connected to a d.c. power supply. An enrichment factor of 25 was obtained for lead after a 120-s electrodeposition for a sample flowing at 1.0 ml min−1. The method detection limit was 0.2 μg l−1 Pb and the R.S.D.<5% (n=10 for 5 μg l−1 Pb). Up to 2% m/v NaCl or KCl and 5% m/v CaCl2 or MgCl2 did not interfere on the separation and atomization of 5 μg l−1 Pb.  相似文献   

13.
In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min−1 using 0.14 mol l−1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l−1, respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25–50 μg l−1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0–155 μg l−1; Mn: 110–348 μg l−1, Pb: 13.0–32.9 μg l−1, and Zn: 52.7–226 μg l−1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.  相似文献   

14.
An ICP-MS method for the determination of ultra-trace impurities of 21 elements (Be, Al, Ca, Cr, Mn, Co, Ni, Sr, Zr, Ag Cd, In, Sn, La, Ce, Er, Hf, W, Pb, Bi, U) at pg/g to ng/g level in BaTiO3-powders and precursors prepared by different sol-gel-methods was developed. The non-spectral matrix effects like suppression of the analyte signal and spectral effects like the formation of polyatomic ions like MO+, MAr+, MCl+ and M2+ which interfere with isotopes in isobar overlaps was investigated. To correct for these polyatomic ions a “blank solution” with the composition of the sample matrix was measured and the data were subtracted from the results of the sample; a standard addition method for calibration and 45Sc, 89Y, 103Rh and 141Pr as internal standards to compensate the matrix effects were used and improvements in accuracy and precision were shown. The stability of the instrument and the detection limits in the presence of the barium and titanium matrix were established. In BaTiO3 different amounts of trace impurities were detected in the μg/g to ng/g range. The main impurities are strontium and calcium. The source of the impurities are mainly the educts but it is shown that contamination during the synthesis process is also possible.  相似文献   

15.
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn.  相似文献   

16.
The analytical application of neutrons produced by the9Be(d, n)10B reaction using 3-MeV deuterons is presented. The principal reaction for such neutrons is that of inelastic scattering. Fifteen elements were chosen for study (Se, Br, St, Y, Ag, Cd, In, Sn, Er, Lu, Hf, W, Ir, Au and Hg). Gamma-ray spectra of the metastable isomers produced were obtained with a Ge(Li) detector. The minimum weight of each element detectable (LD) was then determined from the spectra. Assuming a sample weight of 5g, several elements (Se, Br, Sr, Y, Hf and Au) had LD values of less than 100 ppm.  相似文献   

17.
Orhan Acar 《Mikrochimica acta》2005,151(1-2):53-58
Lead, Cr, Mn and Zn in slurries of botanic and biological samples were determined by electrothermal atomic absorption spectrometry (ETAAS) using W, Ir, NH4H2PO4, W and NH4H2PO4, Ir and NH4H2PO4, W and Ir, and W + Ir + NH4H2PO4 chemical modifiers in an 0.2% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture. Zeeman effect background correction was performed and platforms inserted into graphite tubes were used. Comprehensive comparative studies were carried out with respect to pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, detection limits and accuracy of the determinations in the presence and absence of modifiers. The mixture of W + Ir + NH4H2PO4 was found to be preferable for the determination of Pb, Cr, Mn and Zn in slurry samples. The pyrolysis temperatures of the analytes were increased up to 1250 °C for Pb, 1000 °C for Zn, 1400 °C for Cr and Mn by using W + Ir + NH4H2PO4 with an 0.2% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture used as diluent solution. The optimum masses of the mixed modifier components were found to be 20 µg W + 4 µg Ir + 50 µg NH4H2PO4. The characteristic masses of Pb, Cr, Mn and Zn obtained are 16.3, 5.6, 0.1 and 1.1 pg, respectively. The detection limits of Pb, Cr, Mn and Zn based on integrated absorbance for 0.5% (m v−1) slurries were found to be 0.14, 0.06, 0.02 and 0.01 µg g−1, respectively. The slurries of botanic and biological certified and standard reference materials were analyzed with and without the modifiers. Depending on the sample type, the percent recoveries increased from 63 up to 104% for analytes when using the proposed modifier mixture.  相似文献   

18.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back-donation, despite the electron deficiency of boron. An electron-precise metal–boron triple bond was first observed in BiB2O [Bi≡B−B≡O] in which both boron atoms can be viewed as sp-hybridized and the [B−BO] fragment is isoelectronic to a carbyne (CR). To search for the first electron-precise transition-metal-boron triple-bond species, we have produced IrB2O and ReB2O and investigated them by photoelectron spectroscopy and quantum-chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O has a closed-shell bent structure (Cs, 1A′) with BO coordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2O is linear (C∞v, 3Σ) with an electron-precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron-precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

19.
A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C60 and C70 at a flow rate of 2.0 ml min−1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min−1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5–5.0 μg l−1) and Pb (10–250 μg l−1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l−1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed (n=10). Finally, a sample throughput of 24 determinations per hour was possible.  相似文献   

20.
A method for determination of inorganic and total mercury by flow injection-cold vapor atomic absorption spectrometry (FI-CVAAS) with on-line oxidation was developed. Potassium peroxodisulphate and sulphuric acid were used as oxidizing agents so that decomposition of organomercury compounds could be achieved. Depending on the temperature selected, inorganic or total mercury could be determined with the same FI manifold. In order to assess the method performance, synthetic wastewater, wastewater, urine and saline water samples were spiked with inorganic mercury, methylmercury and phenylmercury. Quantitative recoveries were obtained for the three mercury species, except with the synthetic wastewater when the chemical oxygen demand value was higher than 1000 mg l−1. In most cases, the standard addition method was usually needed for calibration. LODs calculated as 3 σ/m were 0.47 μg l−1 for inorganic mercury and 0.45 μg l−1 for total mercury. R.S.D. values corresponding to peak height measurements were 1.5 and 2.2% for inorganic mercury and total mercury, respectively. The accuracy of the method was tested by analyzing 5 mol l−1 hydrochloric acid extracts of seven biological and environmental CRMs. LODs in the solid CRMs ranged from 0.032 to 0.074 μg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号