首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
There are two approaches for applying substructuring preconditioner for the linear system corresponding to the discrete Steklov–Poincaré operator arising in the three fields domain decomposition method for elliptic problems. One of them is to apply the preconditioner in a common way, i.e. using an iterative method such as preconditioned conjugate gradient method [S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, I.A.N.-C.N.R, 2000] and the other one is to apply iterative methods like for instance bi-conjugate gradient method, conjugate gradient square and etc. which are efficient for nonsymmetric systems (the preconditioned system will be nonsymmetric). In this paper, second approach will be followed and extensive numerical tests will be presented which imply that the considered iterative methods are efficient.  相似文献   

3.
High-Resolution Color Image Reconstruction with Neumann Boundary Conditions   总被引:1,自引:0,他引:1  
This paper studies the application of preconditioned conjugate gradient methods in high-resolution color image reconstruction problems. The high-resolution color images are reconstructed from multiple undersampled, shifted, degraded color frames with subpixel displacements. The resulting degradation matrices are spatially variant. To capture the changes of reflectivity across color channels, the weighted H 1 regularization functional is used in the Tikhonov regularization. The Neumann boundary condition is also employed to reduce the boundary artifacts. The preconditioners are derived by taking the cosine transform approximation of the degradation matrices. Numerical examples are given to illustrate the fast convergence of the preconditioned conjugate gradient method.  相似文献   

4.
In this paper, we consider solving matrix systems arising from the discretization of Wiener-Hopf equations by preconditioned conjugate gradient (PCG) methods. Circulant integral operators as preconditioners have been proposed and studied. However, the discretization of these preconditioned equations by employing higher-order quadratures leads to matrix systems that cannot be solved efficiently by using fast Fourier transforms (FFTs). The aim of this paper is to propose new preconditioners for Wiener-Hopf equations. The discretization of these preconditioned operator equations by higher-order quadratures leads to matrix systems that involve only Toeplitz, circulant and diagonal matrix-vector multiplications and hence can be computed efficiently by FFTs in each iteration. We show that with the proper choice of kernel functions of Wiener-Hopf equations, the resulting preconditioned operators will have clustered spectra and therefore the PCG method converges very fast. Numerical examples are given to illustrate the fast convergence of the method and the improvement of the accuracy of the computed solutions with using higher-order quadratures.Research supported by the Cooperative Research Centre for Advanced Computational Systems.Research supported in part by Lee Ka Shing scholarship.  相似文献   

5.
We study simple preconditioners for the conjugate gradient method when used to solve matrix systems arising from some hypersingular and weakly singular integral equations. The preconditioners, which are of the type of hierarchical basis preconditioners, are based on the decomposition of the piecewise-linear (respectively piecewise-constant) functions as the sum of prewavelets (respectively derivatives of prewavelets). We prove that with these preconditioners the preconditioned systems have condition numbers uniformly bounded with respect to the degrees of freedom. Numerical experiments support our analysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
We study convergence of multisplitting method associated with a block diagonal conformable multisplitting for solving a linear system whose coefficient matrix is a symmetric positive definite matrix which is not an H-matrix. Next, we study the validity ofm-step multisplitting polynomial preconditioners which will be used in the preconditioned conjugate gradient method.  相似文献   

8.
In this paper, we consider the solution of linear systems of saddle point type by a preconditioned numerical method. We first transform the original linear system into two sub-systems with small size by a preconditioning strategy, then employ the conjugate gradient (CG) method to solve the linear system with a SPD coefficient matrix, and a splitting iteration method to solve the other sub-system, respectively. Numerical experiments show that the new method can achieve faster convergence than several effective preconditioners published in the recent literature in terms of total runtime and iteration steps.  相似文献   

9.
In this work, the optimal adjustment algorithm for p coordinates, which arose from a generalization of the optimal pair adjustment algorithm is used to accelerate the convergence of interior point methods using a hybrid iterative approach for solving the linear systems of the interior point method. Its main advantages are simplicity and fast initial convergence. At each interior point iteration, the preconditioned conjugate gradient method is used in order to solve the normal equation system. The controlled Cholesky factorization is adopted as the preconditioner in the first outer iterations and the splitting preconditioner is adopted in the final outer iterations. The optimal adjustment algorithm is applied in the preconditioner transition in order to improve both speed and robustness. Numerical experiments on a set of linear programming problems showed that this approach reduces the total number of interior point iterations and running time for some classes of problems. Furthermore, some problems were solved only when the optimal adjustment algorithm for p coordinates was used in the change of preconditioners.  相似文献   

10.
In this paper we consider various preconditioners for the conjugate gradient (CG) method to solve large linear systems of equations with symmetric positive definite system matrix. We continue the comparison between abstract versions of the deflation, balancing and additive coarse grid correction preconditioning techniques started in (SIAM J. Numer. Anal. 2004; 42 :1631–1647; SIAM J. Sci. Comput. 2006; 27 :1742–1759). There the deflation method is compared with the abstract additive coarse grid correction preconditioner and the abstract balancing preconditioner. Here, we close the triangle between these three methods. First of all, we show that a theoretical comparison of the condition numbers of the abstract additive coarse grid correction and the condition number of the system preconditioned by the abstract balancing preconditioner is not possible. We present a counter example, for which the condition number of the abstract additive coarse grid correction preconditioned system is below the condition number of the system preconditioned with the abstract balancing preconditioner. However, if the CG method is preconditioned by the abstract balancing preconditioner and is started with a special starting vector, the asymptotic convergence behavior of the CG method can be described by the so‐called effective condition number with respect to the starting vector. We prove that this effective condition number of the system preconditioned by the abstract balancing preconditioner is less than or equal to the condition number of the system preconditioned by the abstract additive coarse grid correction method. We also provide a short proof of the relationship between the effective condition number and the convergence of CG. Moreover, we compare the A‐norm of the errors of the iterates given by the different preconditioners and establish the orthogonal invariants of all three types of preconditioners. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We consider the solutions of block Toeplitz systems with Toeplitz blocks by the preconditioned conjugate gradient (PCG) method. Here the block Toeplitz matrices are generated by nonnegative functions f(x,y). We use band Toeplitz matrices as preconditioners. The generating functions g(x,y) of the preconditioners are trigonometric polynomials of fixed degree and are determined by minimizing (fg)/f∞. We prove that the condition number of the preconditioned system is O(1). An a priori bound on the number of iterations for convergence is obtained.  相似文献   

12.
In recent papers circulant preconditioners were proposed for ill-conditioned Hermitian Toeplitz matrices generated by 2-periodic continuous functions with zeros of even order. It was show that the spectra of the preconditioned matrices are uniformly bounded except for a finite number of outliers and therefore the conjugate gradient method, when applied to solving these circulant preconditioned systems, converges very quickly. In this paper, we consider indefinite Toeplitz matrices generated by 2-periodic continuous functions with zeros of odd order. In particular, we show that the singular values of the preconditioned matrices are essentially bounded. Numerical results are presented to illustrate the fast convergence of CGNE, MINRES and QMR methods.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Summary. In previous works [21–23] we proposed the use of [5] and band Toeplitz based preconditioners for the solution of 1D and 2D boundary value problems (BVP) by means of the preconditioned conjugate gradient (PCG) methods. As and band Toeplitz linear systems can be solved [4] by using fast sine transforms [8], these methods become especially attractive in a parallel environment of computation. In this paper we extend this technique to the nonlinear, nonsymmetric case and, in addition, we prove some clustering properties for the spectra of the preconditioned matrices showing why these methods exhibit a convergence speed which results to be more than linear. Therefore these methods work much finer than those based on separable preconditioners [18,45], on incomplete LU factorizations [36,13,27], and on circulant preconditioners [9,30,35] since the latter two techniques do not assure a linear rate of convergence. On the other hand, the proposed technique has a wider range of application since it can be naturally used for nonlinear, nonsymmetric problems and for BVP in which the coefficients of the differential operator are not strictly positive and only piecewise smooth. Finally the several numerical experiments performed here and in [22,23] confirm the effectiveness of the theoretical analysis. Received December 19, 1995 / Revised version received September 15, 1997  相似文献   

14.
The class of splitting preconditioners for the iterative solution of linear systems arising from Mehrotra’s predictor-corrector method for large scale linear programming problems needs to find a basis through a sophisticated process based on the application of a rectangular LU factorization. This class of splitting preconditioners works better near a solution of the linear programming problem when the matrices are highly ill-conditioned. In this study, we develop and implement a new approach to find a basis for the splitting preconditioner, based on standard rectangular LU factorization with partial permutation of the scaled transpose linear programming constraint matrix. In most cases, this basis is better conditioned than the existing one. In addition, we include a penalty parameter in Mehrotra’s predictor-corrector method in order to reduce ill-conditioning of the normal equations matrix. Computational experiments show a reduction in the average number of iterations of the preconditioned conjugate gradient method. Also, the increased efficiency and robustness of the new approach become evident by the performance profile.  相似文献   

15.
Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations in two dimensions are considered. We propose and analyze the use of circulant preconditioners for the solution of linear systems via preconditioned iterative methods such as the conjugate gradient method. Our motivation is to exploit the fast inversion of circulant systems with the Fast Fourier Transform (FFT). For second-order hyperbolic equations with initial and Dirichlet boundary conditions, we prove that the condition number of the preconditioned system is ofO() orO(m), where is the quotient between the time and space steps andm is the number of interior gridpoints in each direction. The results are extended to parabolic equations. Numerical experiments also indicate that the preconditioned systems exhibit favorable clustering of eigenvalues that leads to a fast convergence rate.  相似文献   

16.
A preconditioned conjugate gradient method is applied to finite element discretizations of some nonsymmetric elliptic systems. Mesh independent superlinear convergence is proved, which is an extension of a similar earlier result from a single equation to systems. The proposed preconditioning method involves decoupled preconditioners, which yields small and parallelizable auxiliary problems.  相似文献   

17.
In this paper, we consider solving the least squares problem minxb-Tx2 by using preconditioned conjugate gradient (PCG) methods, where T is a large rectangular matrix which consists of several square block-Toeplitz-Toeplitz-block (BTTB) matrices and b is a column vector. We propose a BTTB preconditioner to speed up the PCG method and prove that the BTTB preconditioner is a good preconditioner. We then discuss the construction of the BTTB preconditioner. Numerical examples, including image restoration problems, are given to illustrate the efficiency of our BTTB preconditioner. Numerical results show that our BTTB preconditioner is more efficient than the well-known Level-1 and Level-2 circulant preconditioners.  相似文献   

18.
1.IntroductionInthispaPer,westudynumericalsolutionstointegralequationsofthesecondkinddefinedonthehalfline.Morepreciselyweconsidertheequationy(t)+Iooa(t,s)y(s)ds=g(t),OS相似文献   

19.
This paper is concerned with the numerical solution of a symmetric indefinite system which is a generalization of the Karush–Kuhn–Tucker system. Following the recent approach of Luk?an and Vl?ek, we propose to solve this system by a preconditioned conjugate gradient (PCG) algorithm and we devise two indefinite preconditioners with good theoretical properties. In particular, for one of these preconditioners, the finite termination property of the PCG method is stated. The PCG method combined with a parallel version of these preconditioners is used as inner solver within an inexact Interior‐Point (IP) method for the solution of large and sparse quadratic programs. The numerical results obtained by a parallel code implementing the IP method on distributed memory multiprocessor systems enable us to confirm the effectiveness of the proposed approach for problems with special structure in the constraint matrix and in the objective function. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Summary. In [10,14], circulant-type preconditioners have been proposed for ill-conditioned Hermitian Toeplitz systems that are generated by nonnegative continuous functions with a zero of even order. The proposed circulant preconditioners can be constructed without requiring explicit knowledge of the generating functions. It was shown that the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers and that all eigenvalues are uniformly bounded away from zero. Therefore the conjugate gradient method converges linearly when applied to solving the circulant preconditioned systems. In [10,14], it was claimed that this result can be the case where the generating functions have multiple zeros. The main aim of this paper is to give a complete convergence proof of the method in [10,14] for this class of generating functions. Received October 19, 1999 / Revised version received May 2, 2001 / Published online October 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号